Fri.	11.1 Angular Momentum Quiz 10	RE 11.a; HW10: 13*, 21, 30, 35, "39"
Mon.	$11.2-.3$, (.12) Rotational + Translational	RE 11.b
Tues.	EP10	
Mon.	11.4-.6, (.13) Angular Momentum \& Torque	RE 11.c
Tues.	EP11	
Wed.	$11.7-.9$, (.11) Torque	RE 11.d
Lab	L11 Rotation Course Evals	RE 11.e
Fri.	11.10 Quantization, Quiz 11	
Mon.	Review for Final (1-11)	Practice Exam

Introducing Angular Momentum

The measure of motion about a point
sun Magnitude

$$
|L|=\left|p_{\text {around }}\right|\left|r_{\text {sun } \rightarrow \text { Earth }}\right|=\left|p \| r_{\text {sun } \rightarrow \text { Earth }}\right| \sin (\theta)
$$

Only 'around' component of momentum counts
$p_{\text {around }} \stackrel{\rightharpoonup}{p}$
$p_{\text {around }}=p \cos \left(90^{\circ}-\theta\right)=p \sin (\theta)$

Using Angular Momentum

The measure of motion about a point Magnitude

$$
|L|=\left|p _ { \text { around } } \left\|r \left|=\left|p \left\|\left|r_{\perp}\right|=|p \| r| \sin (\theta)\right.\right.\right.\right.\right.
$$

What is the magnitude of the angular momentum about location K, for the object shown below? The magnitude of the object's momentum $|\vec{p}|=7 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$, the distance $|\vec{r}|=0.6 \mathrm{~m}$, and the angle $\theta=150^{\circ}$

Using Angular Momentum

The measure of motion about a point Magnitude

$$
|L|=\left|p_{\text {around }}\right| r\left|=\left|p \left\|r_{\perp}|=|p \| r| \sin (\theta)\right.\right.\right.
$$

Determine the magnitude of the translational angular momentum of the particle at location O relative to each point: A, B, C, D, E, F, G, and H.

$$
\begin{aligned}
& \left|\vec{L}_{F}\right|= \\
& \left|\vec{L}_{G}\right|= \\
& \left|\vec{L}_{H}\right|=
\end{aligned}
$$

Using Angular Momentum

Using Angular Momentum

Distinguish with Right Hand Rule
Example
Orient Right hand so fingers curl with motion, then thump points in conventional direction of angular momentum

A comet orbits the Sun, in the xy plane. Its momentum is shown by the red arrow.
What is the direction of the comet's angular momentum about the Sun?

1) $+x$
2) $-x$
3) $+y$
4) $-y$
5) $+z$
6) $-z$
7) toward the sun
8) away from the sun

Using Angular Momentum

(tip of z-axis arrow pointing at you)
Distinguish with Right Hand Rule

Example

Orient Right hand so fingers curl with motion, then thump points in conventional direction of angular momentum

What are the directions of Angular Momentum for particle 1 about point A and particle 2 about point A
a) $\hat{L}_{1}=+\hat{z} \quad \hat{L}_{2}=+\hat{z}$
b) $\hat{L}_{1}=-\hat{z} \quad \hat{L}_{2}=+\hat{z}$
c) $\hat{L}_{1}=+\hat{z} \quad \hat{L}_{2}=-\hat{z}$

d) $\hat{L}_{1}=-\hat{z} \quad \hat{L}_{2}=-\hat{z}$

Using Angular Momentum

The measure of motion about a point Direction
Distinguish with Right Hand Rule

Determine the direction of the translational angular momentum of the particle at location O relative to each point: A, B, C, D, E, F, G, and H.

$$
\begin{gathered}
\hat{L}_{F}= \\
\hat{L}_{G}= \\
\hat{L}_{H}=
\end{gathered}
$$

A ball falls straight down in the $\boldsymbol{x y}$ plane. Its 1) $+x$$\begin{array}{ll}\text { momentum is shown by the red arrow. } & \text { 2) }-x\end{array}$What is the direction of the ball's angular

$$
\text { 3) }+y
$$

$$
\text { momentum about location } A \text { ? }
$$

$$
\text { 4) }-y
$$

$$
\text { 5) }+\mathrm{z}
$$

$$
\text { 6) }-z
$$

7) zero magnitude
Given these values, what is the magnitude of the ball's angular momentum about A?
8) $10 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}$
9) $40 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}$
10) 0

Using Angular Momentum

The measure of motion about a point Magnitude and Direction

$$
\hat{z} \quad \text { Similarly for position and momentum in the } y-z
$$

$$
\bigcap_{h}^{p_{y}} \overrightarrow{p_{X}} \quad \vec{L}=\left(p_{z} r_{y}-p_{y} r_{z}\right) \hat{x}
$$

$$
\vec{L}=-p_{y} r_{z} \hat{x} \xrightarrow[r_{z}]{r_{z}} \xrightarrow[r_{y}]{\vec{r}} \underset{\hat{y}}{\sim} p_{z}^{\text {and for position and momentum in the } x-z} \vec{L}=\left(p_{x} r_{z}-p_{z} r_{x}\right) \hat{y}
$$

$$
\begin{aligned}
& \xrightarrow{\hat{y}} \begin{array}{ll}
\hat{y} & \vec{L}=\left(p_{y} r_{x}-p_{x} r_{y}\right) \hat{z} \\
p_{x} & \overrightarrow{p_{r}}
\end{array}
\end{aligned}
$$

Using Angular Momentum

The measure of motion about a point Magnitude and Direction

$$
\vec{L}=\vec{r} \times \vec{p}=\left\langle\left(p_{z} r_{y}-p_{y} r_{z}\right),\left(p_{x} r_{z}-p_{z} r_{x}\right),\left(p_{y} r_{x}-p_{x} r_{y}\right)\right\rangle
$$

Example: say you have a mass that, at some instant, has linear momentum $\vec{p}=\langle 4,2,0\rangle \mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$ and is $\vec{r}_{A}=\langle 5,3,0\rangle \mathrm{m}$ from some point A . What is its angular momentum about this point?

$$
\vec{L}=\vec{r} \times \vec{p}=\left\langle\left(p_{z} r_{y}-p_{y} r_{z}\right),\left(p_{x} r_{z}-p_{z} r_{x}\right),\left(p_{y} r_{x}-p_{x} r_{y}\right)\right\rangle
$$

What is the direction of
$<0,0,3>x<0,4,0>$?

What is the direction of

1) $+x$
2) $-x$
3) $+y$
4) $-y$
5) $+z$
6) $-z$
7) zero magnitude

What is the direction of
$<0,0,6>x<0,0,-3>$?

Fri.	11.1 Angular Momentum Quiz 10	RE 11.a; HW10: 13*, 21, 30, "39"
Mon.	$11.2-.3$, (.12) Rotational + Translational	RE 11.b
Tues.	EP10	
Mon.	11.4-.6, (.13) Angular Momentum \& Torque	RE 11.c
Tues.	EP11	
Wed.	$11.7-.9$, (.11) Torque	RE 11.d
Lab	L11 Rotation Course Evals	RE 11.e
Fri.	11.10 Quantization, Quiz 11	
Mon.	Review for Final (1-11)	Practice Exam

