Mon.,	10.9-. 10 Collision Complications	RE 10.c
Lab	L10 Collisions 1	EP9
Wed.,	10.5, .11 Different Reference Frames	RE 10.c
Fri.,	1.1 Translational Angular Momentum Quiz 10	RE 11.a; HW10: Pr's 13*, 21, 30, 35,
		"39"

* For each part of these problems, be very careful about what you choose as the system and what you are using as initial and final states.

Collisions
Short, Sharp Shocks

1-D Collision

Special Case: Perfectly Elastic (all internal changes 'bounce back' Extra special case: Say B is initially stationary
System = carts A \& B
initially

$$
\vec{v}_{A . f}=\left(\frac{m_{A}-m_{B}}{m_{B}+m_{A}}\right) \vec{v}_{A . i}
$$

Say cart A is much more massive than cart B. In that case, cart B comes away with...

1) a lot higher speed than does cart A
2) about twice the speed of cart A
3) about the same speed as cart A
4) about half the speed of cart A
5) a lot less speed than cart A

2-D Collision: Scattering

Slow ($\mathrm{v} \ll \mathrm{C}$), Elastic Collision

$$
\vec{p}_{p . f}=\left\langle p_{p . f} \cos \theta_{p}, p_{p . f} \sin \theta_{p}, 0\right\rangle
$$

$$
\vec{p}_{p . i}=\left\langle p_{p . i}, 0,0\right\rangle
$$

Three Equations / Four Unknowns
Need another equation
Collision geometry and Impact Parameter
Component of momentum along line of contact changes, other component remains constant
b = Impact Parameter
Momentum Principle
$\vec{p}_{p . f}+\vec{p}_{\text {T.f }}-\vec{p}_{p . i}=0$
$\hat{x}: p_{p . f} \cos \theta_{p}+p_{\text {T.f }} \cos \theta_{T}-p_{p . i}=0$
$\hat{y}: p_{p . f} \sin \theta_{p}-p_{T . f}\left|\sin \theta_{T}\right|-0=0$

Energy Principle - if Elastic

$$
\begin{aligned}
& \left(E_{p . f}+E_{T . f}\right)-\left(E_{p . i}+E_{T . i}\right)=0 \\
& K_{p . f}+K_{T . f}-K_{p . i}=0 \\
& \frac{p_{p . f}^{2}}{2 m_{p}}+\frac{p_{T . f}^{2}}{2 m_{T}}-\frac{p_{p . i}^{2}}{2 m_{p}}=0
\end{aligned}
$$

Which of these is true?

1) The larger the impact parameter, the larger the scattering angle (deflection).
2) The larger the impact parameter, the smaller the scattering angle (deflection).

2-D Collision: Scattering - Discovering Nucleus

Prior to the Rutherford experiment (shooting alpha particles at a thin gold foil), the atom's positive charge was thought to be distributed through out the atom rather than concentrated in a small nucleus. So, what aspect of Rutherford's results was surprising to the experimenters?
(1) Sometimes the alpha "rays" passed right through the gold foil.
(1) Sometimes the alpha "rays" were deflected slightly when they passed through the gold foil.
(1) Sometimes the alpha "rays" bounced back from the gold foil.

2-D Collision: Scattering - Discovering Nucleus

Deeper Collisions

- relativistic speeds
- identifying 'mystery' particles
- the mathematical trick of analyzing in the center-of-mass reference frame

2-D Collision: Scattering

$$
\vec{p}_{p . f}=\left\langle p_{p . f} \cos \theta_{p}, p_{p . f} \sin \theta_{p}, 0\right\rangle
$$

$$
\vec{p}_{p . i}=\left\langle p_{p . i}, 0,0\right\rangle
$$

Conservation of Momentum

$$
\begin{aligned}
& \vec{p}_{p . f}+\vec{p}_{T . f}-\vec{p}_{p, i}=0 \\
& \hat{x}: p_{p . f} \cos \theta_{p}+p_{T . f} \cos \theta_{T}-p_{p, i}=0 \\
& \hat{y}: p_{p . f} \sin \theta_{p}-p_{T . f}\left|\sin \theta_{T}\right|-0=0
\end{aligned}
$$

where $\vec{p}=\frac{m \vec{v}}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}$
Conservation of Energy

$$
\text { show } E=\sqrt{(p c)^{2}+\left(m c^{2}\right)^{2}}
$$

$$
\begin{aligned}
& \text { Conservation of Energy } \\
& \left(E_{p . f}+E_{T . f}\right)-\left(E_{p . i}+E_{T . i}\right)=0 \quad \text { where } E=\frac{m c^{2}}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}
\end{aligned}
$$

By plugging that into it and recovering that.
$\sqrt{\left(p_{p . f} c\right)^{2}+\left(m_{p . f} c^{2}\right)^{2}}+\sqrt{\left(p_{T . f} c\right)^{2}+\left(m_{T . f} c^{2}\right)^{2}}-\sqrt{\left(p_{p . i} c\right)^{2}+\left(m_{p, i} c^{2}\right)^{2}}-m_{T . i} c^{2}=0$
Note: initial and final masses differ for inelastic collisions

2-D Collision: Scattering

Fast

Mass, Elastic \& Inelastic

Recall particle energy: $E=K+E_{\text {int }}$

$$
E_{\mathrm{int}}=m c^{2}
$$

Elastic: $\Delta E_{\mathrm{int}}=\Delta m c^{2}=0$
$\sqrt{\left(p_{p . f} c\right)^{2}+\left(m_{p} c^{2}\right)^{2}}+\sqrt{\left(p_{T . f} c\right)^{2}+\left(m_{T} c^{2}\right)^{2}}-\sqrt{\left(p_{p . i} c\right)^{2}+\left(m_{p} c^{2}\right)^{2}}-m_{T} c^{2}=0$

In-Elastic: $\Delta E_{\text {int }}=\Delta m c^{2} \neq 0$
$\sqrt{\left(p_{p . f} c\right)^{2}+\left(m_{p . f} c^{2}\right)^{2}}+\sqrt{\left(p_{T . f} c\right)^{2}+\left(m_{T . f} c^{2}\right)^{2}}-\sqrt{\left(p_{p . i} c\right)^{2}+\left(m_{p . i} c^{2}\right)^{2}}-\underline{m_{T . i}} c^{2}=0$
Or even have more or fewer particles finally than initially

2-D Collision: Fast

Example: A beam of high energy π^{-}(negative pions) is shot at a flask of liquid hydrogen, and sometimes a pion interacts through the strong interaction with a proton in the hydrogen, the reaction is $\pi^{-}+p^{+} \rightarrow \pi^{-}+X^{+}$where X^{+}is a positively charged particle of unknown mass (a proton containing reoriented quarks.)
A proton's rest mass is 938 MeV , and a pion's rest mass is 140 MeV . The incoming pion has momentum $3 \mathrm{GeV} / \mathrm{c}$. It scatters through 40°, and its momentum drops to $1.510 \mathrm{GeV} / \mathrm{c}$.
What is the rest mass of the X^{+}?

Conservation of Momentum $\vec{p}_{X . f}$

$\hat{x}: p_{\pi . f} \cos \theta_{\pi}+p_{X . f} \cos \theta_{X}-p_{\pi . i}=0$
$p_{X . f} \cos \theta_{X}=p_{\pi . i}-p_{\pi . f} \cos \theta_{\pi}$
$\hat{y}: p_{\pi . f} \sin \theta_{\pi}-p_{x . f}\left|\sin \theta_{X}\right|=0$
$p_{X . f}\left|\sin \theta_{X}\right|=p_{\pi . f} \sin \theta_{\pi}$
Cancel angle dependence using $\left(\cos \theta_{X}\right)^{2}+\left(\sin \theta_{X}\right)^{2}=1$

$$
\begin{array}{r}
\left(p_{X . f} \cos \theta_{X}\right)^{2}+\left(p_{X . f}\left|\sin \theta_{X}\right|\right)^{2}=\left(p_{\pi . i}-p_{\pi . f} \cos \theta_{\pi}\right)^{2}+\left(p_{\pi . f} \sin \theta_{\pi}\right)^{2} \\
\underline{p_{X . f}}=\sqrt{\left(p_{\pi . i}-p_{\pi . f} \cos \theta_{\pi}\right)^{2}+\left(p_{\pi . f} \sin \theta_{\pi}\right)^{2}}=\sqrt{\left(\underline{p_{\pi . i}}\right)^{2}+\left(\underline{p_{\pi . f}}\right)^{2}-2 \underline{p_{\pi . i} p_{\pi . f} \cos \theta_{\pi}}}
\end{array}
$$

2-D Collision: Fast

Example: A beam of high energy π^{-}(negative pions) is shot at a flask of liquid hydrogen, and sometimes a pion interacts through the strong interaction with a proton in the hydrogen, the reaction is $\pi^{-}+p^{+} \rightarrow \pi^{-}+X^{+}$where X^{+}is a positively charged particle of unknown mass (a proton containing reoriented quarks.)
A proton's rest mass is 938 MeV , and a pion's rest mass is 140 MeV . The incoming pion has momentum $3 \mathrm{GeV} / \mathrm{c}$. It scatters through 40°, and its momentum drops to $1.510 \mathrm{GeV} / \mathrm{c}$.
What is the rest mass of the X^{+}?

Conservation of Momentum

$$
p_{X . f}=\sqrt{\left(\underline{p_{\pi . i}}\right)^{2}+\left(p_{\pi . f}\right)^{2}-2 p_{\pi . i} p_{\pi . f} \cos \theta_{\pi}}
$$

Conservation of Energy

$\sqrt{\left(p_{\pi . f} c\right)^{2}+\left(m_{\pi . f} c^{2}\right)^{2}}+\sqrt{\left(p_{X} c\right)^{2}+\left(m_{X} c^{2}\right)^{2}}-\sqrt{\left(p_{\pi . i} c\right)^{2}+\left(m_{\pi} c^{2}\right)^{2}}-m_{p . i} c^{2}=0$
$\sqrt{\left(p_{X} c\right)^{2}+\left(m_{X} c^{2}\right)^{2}}=\sqrt{\left(p_{\pi \cdot i} c\right)^{2}+\left(m_{\pi} c^{2}\right)^{2}}+m_{p . i} c^{2}-\sqrt{\left(p_{\pi . f} c\right)^{2}+\left(m_{\pi \cdot f} c^{2}\right)^{2}}$
Could do algebraically further, or just plugin numbers and simplify

Deducing the invisible particle: Neutrino

Conservation of Momentum

$$
\begin{aligned}
& \vec{p}_{p}+\vec{p}_{e} \neq 0 \\
& \vec{p}_{p}+\vec{p}_{e}+\vec{p}_{v}=0
\end{aligned}
$$

Must be another particle with missing energy \& momentum
Charge is conserved and detectors can't see it - must be neutral Sometimes energy and momentum almost conserved - must be nearly massless Conservation of Energy

$$
\begin{aligned}
& m_{n} c^{2} \nRightarrow \sqrt{\left(p_{e} c\right)^{2}+\left(m_{e} c^{2}\right)^{2}}+\sqrt{\left(p_{p} c\right)^{2}+\left(m_{p} c^{2}\right)^{2}} \\
& m_{n} c^{2}=\sqrt{\left(p_{e} c\right)^{2}+\left(m_{e} c^{2}\right)^{2}}+\sqrt{\left(p_{p} c\right)^{2}+\left(m_{p} c^{2}\right)^{2}}+\sqrt{\left(p_{v} c\right)^{2}+\left(m_{v} c^{2}\right)^{2}}
\end{aligned}
$$

Center of Mașs \& Collisions High Speeds

$$
{ }^{1} \mathrm{H}+{ }^{2} \mathrm{H} \rightarrow{ }^{3} \mathrm{He} e^{*} \rightarrow{ }^{3} \mathrm{He}+\ldots \quad \text { energy photon }
$$ Knowing the initial momenta and masses, what's the mass of the excited He ?

Conservation of Momentum:

$$
\begin{aligned}
& \vec{p}_{H 1}+\vec{p}_{H 2}=0 \text { in center of mass frame } \\
& \vec{p}_{H 1}=-\vec{p}_{H 2}
\end{aligned}
$$

Stage 1
Conservation of Energy:

$$
\begin{aligned}
& E=\sqrt{\left(p_{H 1} c\right)^{2}+\left(m_{H 1} c^{2}\right)^{2}}+\sqrt{\left(p_{H 2} c\right)^{2}+\left(m_{H 2} c^{2}\right)^{2}} \\
& E=\sqrt{\left(p_{H 1} c\right)^{2}+\left(m_{H 1} c^{2}\right)^{2}}+\sqrt{\left(p_{H 1} c\right)^{2}+\left(m_{H 2} c^{2}\right)^{2}} \\
& E=m_{H e^{*}} c^{2} \quad \text { or } m_{H e}=E / c^{2}
\end{aligned}
$$

What's the photon's momentum?

$$
\begin{gathered}
\vec{p}_{H e}+\vec{p}_{\gamma}=0 \\
E=\sqrt{\left(p_{H e} c\right)^{2}+\left(m_{H e} c^{2}\right)^{2}}+\sqrt{\left(p_{\gamma} c\right)^{2}+\left(m_{\gamma} c^{2}\right)^{2}} \\
\\
E=\sqrt{\left(p_{\gamma} c\right)^{2}+\left(m_{H e} c^{2}\right)^{2}}+p_{\gamma} c \quad \text { photon is massless } \\
\left(E-p_{\gamma} c\right)^{2}=\left(p_{\gamma} c\right)^{2}+\left(m_{H e} c^{2}\right)^{2} \\
E^{2}-2 E p_{\gamma} c+\left(p_{\gamma} c\right)^{2}=\left(p_{\gamma} c\right)^{2}+\left(m_{H e} c^{2}\right)^{2} \\
\frac{E^{2}-\left(m_{H e} c^{2}\right)^{2}}{2 E c}=p_{\gamma}
\end{gathered}
$$

Mon.,	$10.9-.10$ Collision Complications	
Lab	L10 Collisions 1	EP9
Wed.,	10.5, .11 Different Reference Frames	RE 10.c
Fri.,	1.1 Translational Angular Momentum Quiz 10	RE 11.a; HW10: Pr's 13*, 21, 30,35,
		"39"

* For each part of these problems, be very careful about what you choose as the system and what you are using as initial and final states.

Collisions
Short, Sharp Shocks

