.	10.6-.8 Scattering	RE 10.b
on.,	10.9-.10 Collision Complications	RE 10.c
ib	L10 Collisions 1	EP9
ed.,	10.5, .11 Different Reference Frames	
11.1 Translational Angular Momentum Quiz 10	RE 11.a; HW10: Pr's 13*, 21, 30, "39	

Collisions Short, Sharp Shocks

Which of the following is a property of all collisions - both "elastic" and "inelastic" collisions?
(1) The internal energy of the system after the collision is different from what it was before the collision.
(2) The total momentum of the system doesn't change.
(3) The total kinetic energy of the system doesn't change.

Which of the following is a property of all "elastic" collisions?
(1) The colliding objects interact through springs.
(2) The kinetic energy of one of the objects doesn't change.
(3) The total kinetic energy is constant at all times -- before, during, and after the collision.
(4) The total kinetic energy after the collision is equal to the total kinetic energy before the collision.
(5) The elastic spring energy after the collision is greater than the elastic spring energy before the collision.

1-D Collision

System = carts A \& B

Often know initial motion, want to predict final motion
Two unknowns: $\vec{v}_{A . f}$ and $\vec{v}_{B . f}$
Generally need two equations to solve for them
True for all collisions

$$
\begin{aligned}
& \Delta \vec{p}_{A \& B}=\Delta \vec{p}_{A}+\Delta \vec{p}_{B} \approx 0 \\
& \Delta E_{A \& B}=\Delta E_{A}+\Delta E_{B}+\Delta U_{A \& B} \approx 0 \\
& \Delta K_{A}+\Delta E_{\mathrm{int} . A} \\
& \Delta K_{B}+\Delta E_{\mathrm{int} . B}
\end{aligned}
$$

1-D Collision

Special Case: "Maximally Inelastic" - hit \& stick

System = carts A \& B
\& B
initially
finally

$$
\begin{gathered}
\overbrace{\left(m_{A} \vec{v}_{A . f}-m_{A} \vec{v}_{A . i}\right)+(\overbrace{m_{B}} \vec{v}_{B . f}-m_{B} \vec{v}_{B . i})}^{\Delta \vec{p}_{B} \approx 0}\left(v^{\prime} s \ll c\right) \\
\left(m_{A} \vec{v}_{f}-m_{A} \vec{v}_{A . i}\right)+\left(m_{B} \vec{v}_{f}-m_{B} \vec{v}_{B . i}\right) \approx 0 \\
\vec{v}_{f} \approx \frac{m_{A} \vec{v}_{A . i}+m_{B} \vec{v}_{B . i}}{m_{A}+m_{B}}
\end{gathered}
$$

1-D Collision

Special Case: Perfectly Elastic (all internal changes 'bounce back'
System = carts A \& B
initially
finally

$$
\Delta E_{A \& B}=\Delta K_{A}+\Delta E_{A g n t}+\Delta K_{B}+\Delta E_{B . \mathrm{int}}+\Delta U_{\triangle \unlhd B}
$$

$$
\left(\frac{1}{2} m_{A} v_{A . f}^{2}-\frac{1}{2} m_{A} v_{A . i}^{2}\right)+\left(\frac{1}{2} m_{B} v_{B . f}^{2}-\frac{1}{2} m_{B} v_{B . i}^{2}\right) \approx 0 \quad\left(v^{\prime} s \ll c\right)
$$

Equation $1\left(\frac{p_{A . f}^{2}}{2 m_{A}}-\frac{p_{A . i}^{2}}{2 m_{A}}\right)+\left(\frac{p_{B . f}^{2}}{2 m_{B}}-\frac{p_{B . i}^{2}}{2 m_{B}}\right) \approx 0$
Equation 2

$$
\vec{p}_{A . f}+\vec{p}_{B . f}=\vec{p}_{A . i}+\vec{p}_{B . i}
$$

1-D Collision

Special Case: Perfectly Elastic (all internal changes 'bounce back'
Extra special case: Say B is initially stationary

1-D Collision

Special Case: Perfectly Elastic Transform for B initially moving
Say l'm watching this collision while I'm just sitting here. According to me

$$
\vec{v}_{B . i . m e}=0
$$

Initially I see
Say you're watching this collision while walking by with velocity $\vec{v}_{\text {you }}$ Relative to you the initial velocities are
$\vec{v}_{\text {B.i. } \text { you }}=-\vec{v}_{y o u}$
$\vec{v}_{\text {A.i.you }}=\vec{v}_{\text {A.i.me }}-\vec{v}_{\text {you }}$

$\longleftarrow-\vec{v}_{\text {you }}$
Similarly, after the collision, according to me
$\bar{i}_{\Delta t \times m e}$
Finally I see

And according to you

$$
\vec{v}_{\text {A.f. you }}=\vec{v}_{\text {A.f.me }}-\vec{v}_{\text {you }}
$$

1-D Collision

Special Case: Perfectly Elastic Transform for B initially moving

So, completely rephrasing things from your perspective:
$\vec{v}_{\text {A.i. you }}=\vec{v}_{\text {A.i.me }}-\vec{v}_{\text {you }} \quad \vec{v}_{\text {B.i. } \text { you }}=-\vec{v}_{y o u}$

2-D Collision: Scattering
 Slow (v<<C)

2-D Collision: Scattering
Slow ($\mathrm{v} \ll \mathrm{C}$)

$$
\vec{p}_{p . f}=\left\langle p_{p . f} \cos \theta_{p}, p_{p . f} \sin \theta_{p}, 0\right\rangle
$$

Three Equations / Four Unknowns
Need another equation
Or more information

Momentum Principle
Energy Principle
$\vec{p}_{p . f}+\vec{p}_{\text {T.f }}-\vec{p}_{p . i}=0$

$$
\left(E_{p . f}+E_{T . f}\right)-\left(E_{p . i}+E_{T . i}\right)=0
$$

$\hat{x}: p_{p . f} \cos \theta_{p}+p_{T . f} \cos \theta_{T}-p_{p . i}=0 \quad K_{p . f}+K_{T . f}-K_{p . i}+\Delta E_{\text {int. } . p}+\Delta E_{\text {int.t }}+\Delta U_{t, p}=0$
$\hat{y}: p_{p . f} \sin \theta_{p}-p_{T . f}\left|\sin \theta_{T}\right|-0=0$

$$
\frac{p_{p . f}^{2}}{2 m_{p}}+\frac{p_{T . f}^{2}}{2 m_{T}}-\frac{p_{p . i}^{2}}{2 m_{p}}=0
$$

2-D Collision: Scattering

Example. Say a 2 kg puck moving at $3 \mathrm{~m} / \mathrm{s}$ collides with a 4 kg puck that's just sitting there. Say the 2 kg puck travels off at 30° and the 4 kg one travels down at 50°. What are the final speeds and is the collision elastic?

$$
\vec{p}_{p . f}=\left\langle p_{p . f} \cos \theta_{p}, p_{p . f} \sin \theta_{p}, 0\right\rangle
$$

Momentum Principle
$\hat{x}: p_{p . f} \cos \theta_{p}+p_{T . f} \cos \theta_{T}-p_{p . i}=0$
$\hat{y}: p_{p . f} \sin \theta_{p}-p_{T . f}\left|\sin \theta_{T}\right|-0=0$

Energy Principle - if Elastic
$\frac{p_{p . f}^{2}}{2 m_{p}}+\frac{p_{T . f}^{2}}{2 m_{T}}-\frac{p_{p . i}^{2}}{2 m_{p}}=0$

2-D Collision: Scattering

Slow ($\mathrm{v} \ll \mathrm{C}$), Elastic Collision

$$
\vec{p}_{p . f}=\left\langle p_{p . f} \cos \theta_{p}, p_{p . f} \sin \theta_{p}, 0\right\rangle
$$

$$
\vec{p}_{p . i}=\left\langle p_{p . i}, 0,0\right\rangle
$$

$$
\mathrm{P} \xrightarrow{ } \quad \vec{p}_{T . i}=0
$$

m_{p}
Three Equations / Four Unknowns
Need another equation

Special case: equal masses

$$
\begin{aligned}
m_{p} & =m_{T} \\
\frac{p_{p . i}^{2}}{2 m_{p}} & =\frac{p_{p . f}^{2}}{2 m_{p}}+\frac{p_{T . f}^{2}}{2 m_{\vec{T}}} \Rightarrow \underline{p_{p . i}^{2}=p_{p . f}^{2}+p_{T . f}^{2}}
\end{aligned}
$$

$$
\vec{p}_{T . f}=\left\langle p_{T . f} \cos \theta_{T},-p_{T . f}\right| \sin \theta_{T}|, 0\rangle
$$

$$
\vec{p}_{p . i}=\vec{p}_{p . f}+\vec{p}_{T . f} \Rightarrow p_{p i}^{2}=\vec{p}_{p i} \bullet \vec{p}_{p i}=\left(\vec{p}_{p f}+\vec{p}_{f f}\right) \bullet\left(\vec{p}_{p f}+\vec{p}_{t f}\right)
$$

$$
p_{p i}^{2}=p_{p f}^{2}+p_{T f}^{2}+2 \vec{p}_{p f} \bullet \vec{p}_{T f}
$$

A: projectile missed target
B: $\theta_{\mathrm{p}}+\left|\theta_{\mathrm{T}}\right|=90^{\circ}$
compare

Must be zero

Slow ($\mathrm{v} \ll \mathrm{C}$), Elastic Collision

$$
\vec{p}_{p . f}=\left\langle p_{p . f} \cos \theta_{p}, p_{p . f} \sin \theta_{p}, 0\right\rangle
$$

$$
\vec{p}_{p . i}=\left\langle p_{p . i}, 0,0\right\rangle
$$

$$
\mathrm{P} \longrightarrow \vec{p}_{T . i}=0
$$

Three Equations / Four Unknowns Need another equation

Energy Principle - if Elastic

$$
\begin{aligned}
& \left(E_{p . f}+E_{T . f}\right)-\left(E_{p . i}+E_{T . i}\right)=0 \\
& K_{p . f}+K_{T . f}-K_{p . i}=0 \\
& \frac{p_{p . f}^{2}}{2 m_{p}}+\frac{p_{T . f}^{2}}{2 m_{T}}-\frac{p_{p . i}^{2}}{2 m_{p}}=0
\end{aligned}
$$

2-D Collision: Scattering

Slow ($\mathrm{v} \ll \mathrm{C}$), Elastic Collision

$$
\vec{p}_{p . f}=\left\langle p_{p . f} \cos \theta_{p}, p_{p . f} \sin \theta_{p}, 0\right\rangle
$$

$$
\vec{p}_{p . i}=\left\langle p_{p . i}, 0,0\right\rangle
$$

Three Equations / Four Unknowns
Need another equation
Collision geometry and Impact Parameter
Component of momentum along line of contact changes, other component remains constant
b = Impact Parameter
Momentum Principle
$\vec{p}_{p . f}+\vec{p}_{\text {T.f }}-\vec{p}_{p . i}=0$
$\hat{x}: p_{p . f} \cos \theta_{p}+p_{\text {T.f }} \cos \theta_{T}-p_{p . i}=0$
$\hat{y}: p_{p . f} \sin \theta_{p}-p_{T . f}\left|\sin \theta_{T}\right|-0=0$

Energy Principle - if Elastic

$$
\begin{aligned}
& \left(E_{p . f}+E_{T . f}\right)-\left(E_{p . i}+E_{T . i}\right)=0 \\
& K_{p . f}+K_{T . f}-K_{p . i}=0 \\
& \frac{p_{p . f}^{2}}{2 m_{p}}+\frac{p_{T . f}^{2}}{2 m_{T}}-\frac{p_{p . i}^{2}}{2 m_{p}}=0
\end{aligned}
$$

Which of these is true?

1) The larger the impact parameter, the larger the scattering angle (deflection).
2) The larger the impact parameter, the smaller the scattering angle (deflection).

2-D Collision: Scattering

Qualitative effect of Impact Parameter

Miss: b too big

Glancing Blow: b big

Solid Blow: b small

major deflection

Probability and Cross-sectional Area Playing Darts Badly

2-D Collision: Scattering - Discovering

 Nucleus

Racioact ine source

Scattering angle θ

In the Rutherford experiment, what was surprising to the experimenters?
(1) Sometimes the alpha "rays" passed right through the gold foil.
(2) Sometimes the alpha "rays" were deflected slightly when they passed through the gold foil.
(3) Sometimes the alpha "rays" bounced back from the gold foil.

Deeper Collisions

- relativistic speeds
- identifying 'mystery' particles
- the mathematical trick of analyzing in the center-of-mass reference frame

2-D Collision: Scattering
$\vec{p}_{p . f}=\left\langle p_{p . f} \cos \theta_{p}, p_{p . f} \sin \theta_{p}, 0\right\rangle$
Fast

$$
\vec{p}_{p, i}=\left\langle p_{p, i}, 0,0\right\rangle
$$

Conservation of Momentum

$$
\vec{p}_{p . f}+\vec{p}_{T . f}-\vec{p}_{p, i}=0
$$

$\hat{x}: p_{p . f} \cos \theta_{p}+p_{T . f} \cos \theta_{T}-p_{p, i}=0$
$\hat{y}: p_{p . f} \sin \theta_{p}-p_{\text {T.f }}\left|\sin \theta_{T}\right|-0=0$

where $\quad \vec{p}=\frac{m \vec{v}}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}$
Conservation of Energy

$$
\text { show } E=\sqrt{(p c)^{2}+\left(m c^{2}\right)^{2}}
$$

By plugging that into it and recovering that.
$\sqrt{\left(p_{p . f} c\right)^{2}+\left(m_{p . f} c^{2}\right)^{2}}+\sqrt{\left(p_{T . f} c\right)^{2}+\left(m_{T . f} c^{2}\right)^{2}}-\sqrt{\left(p_{p . i} c\right)^{2}+\left(m_{p, i} c^{2}\right)^{2}}-m_{T . i} c^{2}=0$
Note: initial and final masses differ for inelastic collisions

2-D Collision: Scattering

Fast

Note: initial and final masses differ for inelastic collisions
Recall: particle energy

$$
\begin{aligned}
& E_{p}=K_{p}+E_{p . \mathrm{int}} \\
& \\
& \quad E_{p . \mathrm{int}}=m_{p} c^{2}
\end{aligned}
$$

Elastic

$$
\begin{aligned}
& \Delta E_{p . \mathrm{int}}=\Delta m_{p} c^{2}=0 \\
& \quad \sqrt{\left(p_{p . f} c\right)^{2}+\left(m_{p} c^{2}\right)^{2}}+\sqrt{\left(p_{T . f} c\right)^{2}+\left(m_{T} c^{2}\right)^{2}}-\sqrt{\left(p_{p . i} c\right)^{2}+\left(m_{p} c^{2}\right)^{2}}-m_{T} c^{2}=0
\end{aligned}
$$

In-Elastic

$$
\begin{aligned}
& \Delta E_{p . \text { int }}=\Delta m_{p} c^{2} \neq 0 \\
& \quad \sqrt{\left(p_{p . f} c\right)^{2}+\left(m_{p . f} c^{2}\right)^{2}}+\sqrt{\left(p_{T . f} c\right)^{2}+\left(m_{T . f} c^{2}\right)^{2}}-\sqrt{\left(p_{p . i} c\right)^{2}+\left(m_{p . i} c^{2}\right)^{2}}-m_{T . i} c^{2}=0
\end{aligned}
$$

2-D Collision: Fast

Example: A beam of high energy π^{-}(negative pions) is shot at a flask of liquid hydrogen, and sometimes a pion interacts through the strong interaction with a proton in the hydrogen, the reaction is $\pi^{-}+p^{+} \rightarrow \pi^{-}+X^{+}$where X^{+}is a positively charged particle of unknown mass (essentially an excited proton.)
A proton's rest mass is 938 MeV , and a pion's rest mass is 140 MeV . The incoming pion has momentum $3 \mathrm{GeV} / \mathrm{c}$. It scatters through 40°, and its momentum drops to $1.510 \mathrm{GeV} / \mathrm{c}$.
What is the rest mass of the X^{+}?

$$
\vec{p}_{\pi \cdot i}
$$

Conservation of Energy
m_{π}

Conservation of Momentum

$$
\sqrt{\left(p_{\pi . f} c\right)^{2}+\left(m_{\pi \cdot f} c^{2}\right)^{2}}+\sqrt{\left(p_{X} c\right)^{2}+\left(m_{X} c^{2}\right)^{2}}-\sqrt{\left(p_{\pi . i} c\right)^{2}+\left(m_{\pi} c^{2}\right)^{2}}-m_{p . i} c^{2}=0
$$

$$
\hat{x}: p_{\pi . f} \cos \theta_{\pi}+p_{X . f} \cos \theta_{X}-p_{\pi . i}=0 \quad{ }_{p_{X . f}} p_{X . f} \cos \theta_{X}=p_{\pi . i}-p_{\pi . f} \cos \theta_{\pi}
$$

$$
\hat{y}: p_{\pi . f} \sin \theta_{\pi}-p_{X . f}\left|\sin \theta_{X}\right|=0 \quad p_{X . f}\left|\sin \theta_{X}\right|=p_{\pi . f} \sin \theta_{\pi}
$$

$$
\left(p_{X . f} \cos \theta_{X}\right)^{2}+\left(p_{X . f}\left|\sin \theta_{X}\right|\right)^{2}=\left(p_{\pi . i}-p_{\pi . f} \cos \theta_{\pi}\right)^{2}+\left(p_{\pi . f} \sin \theta_{\pi}\right)^{2}
$$

$$
p_{X . f}=\sqrt{\left(p_{\pi \cdot i}-p_{\pi . f} \cos \theta_{\pi}\right)^{2}+\left(p_{\pi \cdot f} \sin \theta_{\pi}\right)^{2}} \quad p_{X . f}=\sqrt{\left(p_{\pi . i}\right)^{2}+\left(p_{\pi . f}\right)^{2}-2 p_{\pi \cdot i} p_{\pi \cdot f} \cos \theta_{\pi}}
$$

2-D Collision: Fast

Example: A beam of high energy π^{-}(negative pions) is shot at a flask of liquid hydrogen, and sometimes a pion interacts through the strong interaction with a proton in the hydrogen, the reaction is $\pi^{-}+p^{+} \rightarrow \pi^{-}+X^{+}$where X^{+}is a positively charged particle of unknown mass (essentially an excited proton.)
A proton's rest mass is 938 MeV , and a pion's rest mass is 140 MeV . The incoming pion has momentum $3 \mathrm{GeV} / \mathrm{c}$. It scatters through 40°, and its momentum drops to $1.510 \mathrm{GeV} / \mathrm{c}$.
What is the rest mass of the X^{+}?

$$
\vec{p}_{\pi i i}
$$

Conservation of Momentum

Conservation of Energy

$$
p_{X . f}=\sqrt{\left(p_{\pi i}\right)^{2}+\left(p_{\pi . f}\right)^{2}-2 p_{\pi i} p_{\pi . f} \cos \theta_{\pi}}
$$

$$
\begin{aligned}
& \sqrt{\left(p_{\pi . f} c\right)^{2}+\left(m_{\pi \cdot f} c^{2}\right)^{2}}+\sqrt{\left(p_{X} c\right)^{2}+\left(m_{X} c^{2}\right)^{2}}-\sqrt{\left(p_{\pi . i} c\right)^{2}+\left(m_{\pi} c^{2}\right)^{2}}-m_{p . i} c^{2}=0 \\
& \sqrt{\left(p_{X} c\right)^{2}+\left(m_{X} c^{2}\right)^{2}}=\sqrt{\left(p_{\pi . i} c\right)^{2}+\left(m_{\pi} c^{2}\right)^{2}}+m_{p . i} c^{2}-\sqrt{\left(p_{\pi . f} c\right)^{2}+\left(m_{\pi . f} c^{2}\right)^{2}}
\end{aligned}
$$

Could do algebraically further, or just plugin numbers and simplify

.	10.6-.8 Scattering	RE 10.b
on.,	10.9-.10 Collision Complications	RE 10.c
ib	L10 Collisions 1	EP9
ed.,	10.5, .11 Different Reference Frames	
11.1 Translational Angular Momentum Quiz 10	RE 11.a; HW10: Pr's 13*, 21, 30, "39	

Collisions Short, Sharp Shocks

