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Collisions!

Short, Sharp Shocks



Ty = Operational definition: quick enough/strong enough interaction that all
CO”|S|On " others are negligible

Short, Sharp Example

System = ball

e

Can ignore Earth’s pull during “smack”.

Say an 0.5 kg ball is in contact is in contact with the
bat for 5 ms. During that time, it switches from going
forward at 100mph = 44.7 m/s to going 80 mph
backward = 35.8 m/s.

F

net ‘

B ‘Ar)‘ _ ‘O.Skg (-35.8m/5)-0.5kg-(44.7m/s)  _g e

At 0.005s

Of that, the Earth’s pull accounts for only
Py e|=mg = (O.5kg)(9.8m/sz): 49N



Example

1-D Collision

System =cartsA & B

— > — —
’iﬁglwﬁt&m “i&—fricﬁon |
4
Pow.T%
finally Aciricion, I L ) %FA””C“O”
- | |

Often know initial motion, want to predict final motion

Two unknowns: V, . and Vj .

Generally need two equations to solve for them



1-D Collision

One of the Equations: Momentum Principle

d psystem —

net.ext
Example dt

System =cartsA& B
— pA.i > — pB.i —

FA(— fricgo_r“ ME&— friction

— Initially | \/4
_ " POWT% =
At £ «— Pas Ps. f—“—>
A< frlctlon m m A<— friction
__finally |

—

Arjksystem F At

systemr net.ext



1-D Collision

One of the Equations: Momentum Principle

System = carts A& B ﬁA.i > PPE— pB_i N
F e trictio AN DEEE Fq. icion
— initially T / '
N/
_ = > Powl=< -
At c — Pa; Ps. f——>

A f”Ctlon m m A<— friction

__finally | |

AR +ADg ~ 0 (v's <<c)

—

(mAVA.f - mA\_iA.i )"' (mBVB.f - mBVB.i

! \ (‘A 5z0




A space satellite of mass 500 kg
has velocity < 12, 0, =8 > m/s just
before being struck by a rock of
mass 3 kg with velocity

< -3000, 0, 900 > m/s.

After the collision the rock’s
velocity is <700, 0, —-300 > m/s.
Now what is the velocity of the
space satellite?

<=5100, 0, =400 > m/s
<=10.2,0,-0.8 >m/s
<10.2,0,0.8> m/s

. <=3688, 0, 1191 > m/s

<3688, 0,-1192 > m/s




1-D Collision

One of the Equations: Momentum Principle

Special Case: “Maximally Inelastic” — hit & stick

System =cartsA & B A
— pA.i > T pB.i —
FA(— frict"&m “i&—friction
— initially | y |
_ Powé
At IE pA f=> pB f=—>
A« frictor O P icion
: —> <« !
__finally | |

AA +Apg = (v's <<c)

! \ (‘A 5z0

—

(mA\_iA.f - mA\_iA.i )"' (mBVB.f - mB\_iB.i

Other Equations: for “Maximally Inelastic”

o —_

Var = Vg

Vs



A squishy clay ball collides in
midair with a baseball, and
sticks to the baseball, which
keeps going.

Initial momenta:
pl_CLAY and pl_ BALL

Final momentum of clay+ball :

P2

Which equation correctly describes
this collision?

) P, = P clay + P AL

2) P, > pl_CLAY + pl_BALL

P, < pl_CLAY + pl_BALL




Maximally Inelastic

Initial
m
4B

V-M-/

?
I

final

A bullet of mass m traveling (1) v
horizontally at a very high speed
v embeds itself in a block of
mass M that is sitting at rest on
a nearly frictionless surface. (2)
What is the speed of the block
just after the bullet embeds
itself in the block?




1-D Collision

Special Case: “Maximally Inelastic” — hit & stick
Multi-step Example: A 60kg kid’s on a swing, say she’s gotten herself going so that at
her highest her center of mass is 4m above the ground and when she swoops down her
center of mass is just 0.5 m above the ground. On her down-sweep, she reaches down
and picks up her 3kg backpack that’s sitting on the ground (maybe her cell phone
started ringing).
How high will she get on her upswing with the pack in her lap?




1-D Collision

Second Equations: Energy Principle AEA&B ~ 0

System =carts A& B pA.i - e F)B.i
— initially | m \/4
S PowlE
At — «— Pa Pg f——
__finally | l

AE, . =AK, +AE,. . +AK; +AE; . + AU ..



3

Maximally Inelastic
final

Initial

Which is an accurate energy equation for this collision
for the system of ?

1 mv,”
2

internal ~—

%(M +m)v: +AE
1

internal — A~
2

AE

1 M +m)v? :lmv.2+AE
(5) ( f i

internal



A squishy clay ball collides in midair  Which equation correctly describes
with a baseball, and sticks to the this collision?
baseball, which keeps going.

1) KcIay+baII= K1cIay + K1baseba|l
Kinetic energies. 2) KcIay+baII> K1cIay + K1baseba|l

K1c|ay’ K1basebal| 3) KcIay+baII< K1cIay + K1baseba|l
kinetic energy of clay+ball :



1-D Collision

Second Equations: Energy Principle AEA&B ~ 0
System = carts A & B Pai > «—— DPg;

fomi o yom

— initially | y

A
= > Powl=

At — «— Pas Pg——

__finally | “ m

AE, . =AK, +AE,. . +AK; +AE; . + AU ..

Special Case: Perfectly Elastic (all internal changes ‘bounce back’)

AE, .. =AK, +
(vaf >m VAI)

Pj ¢ B D2, N pB.f B P,

2m, 2m, ) (2m; 2m,




Which of the following is a property of all collisions?

(1) The colliding objects interact through springs.

(2) The kinetic energy of one of the objects doesn’t change.

(3) The total kinetic energy is constant at all times -- before, during, and after the
collision.

(4) The total kinetic energy after the collision is equal to the total kinetic energy
before the collision.

(5) The elastic spring energy after the collision is greater than the elastic spring
energy before the collision.



1-D Collision

Example

System =cartsA& B

FA(— fric’c”&m “i&— friction
initially y |
Pow!

Pac tricion (N D P icion
. —_—> <«
finally | |

Often know initial motion, want to predict final motion

Two unknowns: V, and Vg

Generally need two equations to solve for them

. i APpgs = AP, +APg =0
rue for all collisions
AE oz =AE, +AE; + AU .z =0
{AKA + AE'nt.A | {AKB + AEint.B\




1-D Collision

Special Case: Perfectly Elastic (all internal changes ‘bounce back’

System =carts A& B pA.i - e er.i
initially | 4
N/
" Pow? .
«— Pa Pg f——

finally | ll !! !! !!
AE pg5 =AK, QE\A@ +AKg + int T &B

Lmve . —imv? )+ (Emav?, —imov? )= 0 (VS<<C
(5 MV s _EmAVA.i)_" (5 MgVg _EmBVB.i)N 0 ( )

2 2 2 2
Equation 1 Pas — Pas + Ps — P ~(
2m, 2m, 2mg  2mg

Equation 2 Pas T Pst = Pai T Psi




1-D Collision

Special Case: Perfectly Elastic (all internal changes ‘bounce back’
Deriving relation for Final Speed

2 2 2 2
Equation 1 pA'f — pA'i + pB'f — pB'i ~(
2m, 2m, 2mg  2mg

Equation 2 l_jA.f — 6A.i T 5B.i — 5B.f

% =P+ Pos— Pas )
Pas =\Pai T Psi — Ps¢

pi.f = pi.i T pé.i T pé.f +2Pp; - Pai —2Pgi - Pet —2Pai* Pt

_ _ 2 _ _
pé,fl[ 1 N 1 ]_ﬁB.f .(pB.i_I_pA.i)_l_ pB.i( 1 1 ]+ Pai* Ps, ~0

\2 m, mg } \ m, 2 \m, mg m, |
2
Form of Y\DSTGH'pB.fb‘H:z _bi\/b —4ac

Solved by  Pg; =

/4(%./ 2a




1-D Collision

Special Case: Perfectly Elastic (all internal changes ‘bounce back’
Extra special case: Say B is initially stationary

System =cartsA& B
yoma o yomam o

initially | \/4
= —> Powl=<
<—pA.f pr—_>
finally | I " |
. 11 1 \—F) ABoatPa) PR 1 1) B Pes g
B.fz\mA Mg B.f m, 2 {m, mg m,
1(1 1) . Pa
P = T _M'hz
2\m, mg) 1 Ma
pA.i :2 meA.i

Pe.r =2
mA[ L 1] (mg +m,)
mA mB



1-D Collision

Special Case: Perfectly Elastic (all internal changes ‘bounce back
Extra special case: Say B is initially stationary

J

System =carts A& B >
initially | m \/4 m
Z
= = Powl=
- pA.f pB (——
finally | l Il Il Il
= m F)A.i — D
0 2—F Pat = Pai = Ps s
3 (mB +mA) 5 —5 _92 Mg Py
AB = 2mA \7A, Pat Pai (mB _|_ mA)
(mB + mA) |




1-D Collision

Special Case: Perfectly Elastic (all internal changes ‘bounce back’

Extra special case: Say B is initially stationary
- Initially Stationary

System =cartsA& B
initially | |
2m
- A —
5 m, —Mg v vB_f:(m e )VA.i
Af — A
" lm, +m, I<—f) Pow! 5 8 A
A f B.f —>

finally |
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Collisions!

Short, Sharp Shocks






Fast (v~c) Collision Po.1

Pr



Fast (v~c) Collision Ppr = < Pyt COSGy, Py ¢ SING, ’O>

m,
My

Conservation of Momentum

Ppt+Prs—Ppi=0 ‘ ............................
NO+

X pp.fCOSQp—ka_f COS‘9T_pp.i =0 ) -
pT.f :<pT.f Cose 1_pT_f‘S|n HT

0)

§:p,;sind —p;[sing;|-0=0



Fast (v~c) Collision Ppr = < Pyt COSGy, Py ¢ SING, ’O>

m,
My

Conservation of Momentum

Ppt+Prs—Ppi=0 ‘ ............................
NO+

X pp.fCOSQp—ka_f COS‘9T_pp.i =0 ) -
pT.f :<pT.f Cose 1_pT_f‘S|n HT

0)

§:p,;sind —p;[sing;|-0=0




Fast (v~c) Collision Ppr = < Py COS6,, Py s SING, ’O>

P _P. . I_jT.i =
T

m, S
My

Conservation of Momentum

Ppt+Prs—Ppi=0 ‘ ............................
NO+

X pp.fCOSQp—ka_f COS‘9T_pp.i =0 ) -
pT.f :<pT.f Cose 1_pT_f‘S|n HT

0)

§:p,;sind —p;[sing;|-0=0
where oomv
1-(¢)
Conservation of Energy

(Ep.f +Eqr )_ (Ep.i +Eq; ): 0
where




Fast (v~c) Collision Ppr = < Py COS6,, Py s SING, ’O>

Conservation of Momentum

Ppt+Prs—Ppi=0 ‘ ............................
NO+

X:PpC0SH, +prCOSE —py; =0
§:p,;sind —p;[sing;|-0=0 Pr.1 :<pT.f Cos &, ,— P ¢[sin HT\,0>

where mv

(7

Conservation of Energy
(Ep.f +E; )_(Ep.i + ET.i) 0 CW: show E = \/(pc)2 +(mC2)2

where . By plugging that into it and

recovering that.
(F Y







