Collisions!

Short, Sharp Shocks
Collision: Operational definition: quick enough/strong enough interaction that all others are negligible

Short, Sharp Example
System = ball

Can ignore Earth’s pull during “smack”. Say an 0.5 kg ball is in contact is in contact with the bat for 5 ms. During that time, it switches from going forward at 100 mph = 44.7 m/s to going 80 mph backward = 35.8 m/s.

\[
\left| F_{\text{net}} \right| = \left| \frac{\Delta \vec{p}}{\Delta t} \right| = \frac{0.5 \text{ kg} \cdot (-35.8 \text{ m/s}) - 0.5 \text{ kg} \cdot (44.7 \text{ m/s})}{0.005 \text{ s}} = 8050 \text{ N}
\]

Of that, the Earth’s pull accounts for only

\[
\left| F_{b-E} \right| = mg = (0.5 \text{ kg})(9.8 \text{ m/s}^2) = 4.9 \text{ N}
\]
1-D Collision

Example

System = carts A & B

\[\Delta t \]

Often know initial motion, want to predict final motion

Two unknowns: \(\vec{v}_{A.f} \) and \(\vec{v}_{B.f} \)

Generally need two equations to solve for them
One of the Equations: Momentum Principle

\[\frac{d\vec{p}_{\text{system}}}{dt} = \vec{F}_{\text{net.ext}} \]

Example
System = carts A & B

\[\Delta \vec{p}_{\text{system}} = \vec{F}_{\text{system} - \text{net.ext}} \Delta t \]

If we look right before and right after collision
One of the Equations: Momentum Principle

System = carts A & B

\[\Delta p_A + \Delta p_B \approx 0 \]

\[\left(m_A \vec{v}_{A.f} - m_A \vec{v}_{A.i} \right) + \left(m_B \vec{v}_{B.f} - m_B \vec{v}_{B.i} \right) \approx 0 \]
A space satellite of mass 500 kg has velocity \(< 12, 0, -8 > \) m/s just before being struck by a rock of mass 3 kg with velocity \(< -3000, 0, 900 > \) m/s.

After the collision the rock’s velocity is \(< 700, 0, -300 > \) m/s. Now what is the velocity of the space satellite?

\[
\begin{align*}
(m_A \vec{v}_{A.f} - m_A \vec{v}_{A.i}) + (m_B \vec{v}_{B.f} - m_B \vec{v}_{B.i}) & \approx 0
\end{align*}
\]

a. \(< -5100, 0, -400 > \) m/s
b. \(< -10.2, 0, -0.8 > \) m/s
c. \(< 10.2, 0, 0.8 > \) m/s
d. \(< -3688, 0, 1191 > \) m/s
e. \(< 3688, 0, -1192 > \) m/s
1-D Collision

One of the Equations: Momentum Principle

Special Case: “Maximally Inelastic” – hit & stick

System = carts A & B

\[\Delta t \]

Initially:
\[\vec{F}_{A \leftarrow \text{friction}} \]

Finally:
\[\vec{F}_{A \leftarrow \text{friction}} \]

\[\Delta \vec{p}_A + \Delta \vec{p}_B \approx 0 \]

\[(m_A \vec{v}_{A.f} - m_A \vec{v}_{A.i}) + (m_B \vec{v}_{B.f} - m_B \vec{v}_{B.i}) \approx 0 \]

\((v' s \ll c) \)

Other Equations: for “Maximally Inelastic”

\[\vec{v}_{Af} = \vec{v}_{Bf} \equiv \vec{v}_f \]
A squishy clay ball collides in midair with a baseball, and sticks to the baseball, which keeps going.

Initial momenta: \(\vec{P}_{1_CLAY} \) and \(\vec{P}_{1_BALL} \)

Final momentum of clay+ball: \(\vec{P}_2 \)

Which equation correctly describes this collision?

1) \(\vec{P}_2 = \vec{P}_{1_CLAY} + \vec{P}_{1_BALL} \)

2) \(\vec{P}_2 > \vec{P}_{1_CLAY} + \vec{P}_{1_BALL} \)

3) \(\vec{P}_2 < \vec{P}_{1_CLAY} + \vec{P}_{1_BALL} \)
A bullet of mass m traveling horizontally at a very high speed v embeds itself in a block of mass M that is sitting at rest on a nearly frictionless surface. What is the speed of the block just after the bullet embeds itself in the block?

Options:

1. v
2. $\frac{m}{M}v$
3. $\sqrt{\frac{m}{M + m}}v$
4. $\frac{m}{M + m}v$
5. $\frac{M + m}{m}v$
Multi-step Example: A 60kg kid’s on a swing, say she’s gotten herself going so that at her highest her center of mass is 4m above the ground and when she swoops down her center of mass is just 0.5 m above the ground. On her down-sweep, she reaches down and picks up her 3kg backpack that’s sitting on the ground (maybe her cell phone started ringing).

How high will she get on her upswing with the pack in her lap?

\[m_k = 60kg \]
\[m_b = 3kg \]
\[Y_B = Y_C = 0.5m \]
1-D Collision

Second Equations: Energy Principle

System = carts A & B

\[\Delta E_{A&B} \approx 0 \]

\[\vec{p}_{A,i} \rightarrow \vec{p}_{A.f} \]
\[\vec{p}_{B.i} \rightarrow \vec{p}_{B.f} \]

\[\Delta t \]

\[\Delta E_{A&B} = \Delta K_A + \Delta E_{A\text{.int}} + \Delta K_B + \Delta E_{B\text{.int}} + \Delta U_{A&B} \]
Which is an accurate energy equation for this collision for the system of bullet + block?

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>$\frac{1}{2} (M + m) v_f^2 = \frac{1}{2} m v_i^2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>$\frac{1}{2} M v_f^2 = \frac{1}{2} m v_i^2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>$\frac{1}{2} (M + m) v_f^2 + \Delta E_{\text{internal}} = \frac{1}{2} m v_i^2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>$\Delta E_{\text{internal}} = \frac{1}{2} m v_i^2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>$\frac{1}{2} (M + m) v_f^2 = \frac{1}{2} m v_i^2 + \Delta E_{\text{internal}}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A squishy clay ball collides in midair with a baseball, and sticks to the baseball, which keeps going.

Initial kinetic energies:
\[K_{\text{clay}}, K_{\text{baseball}} \]

Final kinetic energy of clay+ball:

Which equation correctly describes this collision?

1) \[K_{\text{clay+ball}} = K_{\text{clay}} + K_{\text{baseball}} \]
2) \[K_{\text{clay+ball}} > K_{\text{clay}} + K_{\text{baseball}} \]
3) \[K_{\text{clay+ball}} < K_{\text{clay}} + K_{\text{baseball}} \]
1-D Collision

Second Equations: Energy Principle

\[\Delta E_{A&B} \approx 0 \]

System = carts A & B

\[\vec{p}_{A.i} \rightarrow \vec{p}_{A.f} \]

\[\vec{p}_{B.i} \rightarrow \vec{p}_{B.f} \]

\[\Delta t \]

\[\Delta t \]

\[\Delta E_{A&B} = \Delta K_A + \Delta E_{A,int} + \Delta K_B + \Delta E_{B,int} + \Delta U_{A&B} \]

Special Case: Perfectly Elastic (all internal changes ‘bounce back’)

\[\Delta E_{A&B} = \Delta K_A + \Delta E_{A,int} + \Delta K_B + \Delta E_{B,int} + \Delta U_{A&B} \]

\[\left(\frac{1}{2} m_A v_{A.f}^2 - \frac{1}{2} m_A v_{A.i}^2 \right) + \left(\frac{1}{2} m_B v_{B.f}^2 - \frac{1}{2} m_B v_{B.i}^2 \right) \approx 0 \quad (v's << c) \]

\[\left(\frac{p_{A.f}^2}{2m_A} - \frac{p_{A.i}^2}{2m_A} \right) + \left(\frac{p_{B.f}^2}{2m_B} - \frac{p_{B.i}^2}{2m_B} \right) \approx 0 \]
Which of the following is a property of all “elastic” collisions?

(1) The colliding objects interact through springs.
(2) The kinetic energy of one of the objects doesn’t change.
(3) The total kinetic energy is constant at all times -- before, during, and after the collision.
(4) The total kinetic energy after the collision is equal to the total kinetic energy before the collision.
(5) The elastic spring energy after the collision is greater than the elastic spring energy before the collision.
1-D Collision

Example

System = carts A & B

Often know initial motion, want to predict final motion

Two unknowns: \(\vec{v}_{A,f} \) and \(\vec{v}_{B,f} \)

Generally need two equations to solve for them

\[
\Delta \vec{p}_{A&B} = \Delta \vec{p}_A + \Delta \vec{p}_B \approx 0
\]

True for all collisions

\[
\Delta E_{A&B} = \Delta E_A + \Delta E_B + \Delta U_{A&B} \approx 0
\]

\[
\Delta K_A + \Delta E_{\text{int}.A} \quad \Delta K_B + \Delta E_{\text{int}.B}
\]
1-D Collision

Special Case: Perfectly Elastic (all internal changes ‘bounce back’)

System = carts A & B

\[\Delta E_{A&B} = \Delta K_A + \Delta E_{A,\text{int}} + \Delta K_B + \Delta E_{B,\text{int}} + \Delta U_{A&B} \]

\[\left(\frac{1}{2} m_A v_{A,f}^2 - \frac{1}{2} m_A v_{A,i}^2 \right) + \left(\frac{1}{2} m_B v_{B,f}^2 - \frac{1}{2} m_B v_{B,i}^2 \right) \approx 0 \quad \text{(v's << c)} \]

Equation 1

\[\left(\frac{p_{A,f}^2}{2m_A} - \frac{p_{A,i}^2}{2m_A} \right) + \left(\frac{p_{B,f}^2}{2m_B} - \frac{p_{B,i}^2}{2m_B} \right) \approx 0 \]

Equation 2

\[\vec{p}_{A,f} + \vec{p}_{B,f} = \vec{p}_{A,i} + \vec{p}_{B,i} \]
1-D Collision

Special Case: Perfectly Elastic (all internal changes ‘bounce back’)

Deriving relation for Final Speed

\[
\begin{align*}
\text{Equation 1} & \quad \left(\frac{p_{A.f}^2}{2m_A} - \frac{p_{A.i}^2}{2m_A} \right) + \left(\frac{p_{B.f}^2}{2m_B} - \frac{p_{B.i}^2}{2m_B} \right) \approx 0 \\
\text{Equation 2} & \quad \vec{p}_{A.f} = \vec{p}_{A.i} + \vec{p}_{B.i} - \vec{p}_{B.f} \\
& \quad p_{A.f}^2 = \left(\vec{p}_{A.i} + \vec{p}_{B.i} - \vec{p}_{B.f} \right)^2 \\
& \quad p_{A.f}^2 = p_{A.i}^2 + p_{B.i}^2 + p_{B.f}^2 + 2\vec{p}_{A.i} \cdot \vec{p}_{B.i} - 2\vec{p}_{B.i} \cdot \vec{p}_{B.f} - 2\vec{p}_{A.i} \cdot \vec{p}_{B.f} \\
& \quad p_{B.f}^2 \left(\frac{1}{m_A} + \frac{1}{m_B} \right) - \vec{p}_{B.f} \cdot \left(\frac{\vec{p}_{B.i} + \vec{p}_{A.i}}{m_A} \right) + \frac{p_{B.i}^2}{2} \left(\frac{1}{m_A} - \frac{1}{m_B} \right) + \frac{\vec{p}_{A.i} \cdot \vec{p}_{B.i}}{m_A} \approx 0
\end{align*}
\]

\[\text{Solved by } \quad p_{B.f} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\]
1-D Collision

Special Case: Perfectly Elastic (all internal changes ‘bounce back’)

Extra special case: Say B is initially stationary

System = carts A & B

Initially

\[\vec{p}_{A.f} \quad \text{Pow!} \quad \vec{p}_{B.f} \]

Finally

\[
\begin{align*}
\frac{p_{B.f}^2}{2} & \left(\frac{1}{m_A} + \frac{1}{m_B} \right) - \vec{p}_{B.f} \cdot \left(\vec{p}_{B.i} + \vec{p}_{A.i} \right) + \frac{p_{B.i}^2}{2} \left(\frac{1}{m_A} - \frac{1}{m_B} \right) + \vec{p}_{A.i} \cdot \vec{p}_{B.i} \approx 0 \\
\frac{p_{B.f}^2}{2} & \left(\frac{1}{m_A} + \frac{1}{m_B} \right) - \vec{p}_{B.f} \cdot \vec{p}_{A.i} \approx 0 \\
\vec{p}_{B.f} & = 2 \frac{\vec{p}_{A.i}}{m_A \left(\frac{1}{m_A} + \frac{1}{m_B} \right)} = 2 \frac{m_B \vec{p}_{A.i}}{(m_B + m_A)}
\end{align*}
\]
1-D Collision

Special Case: Perfectly Elastic (all internal changes ‘bounce back’)

Extra special case: Say B is initially stationary

System = carts A & B

Initially

\[\vec{v}_{B.f} = \frac{2m_A}{(m_B + m_A)} \vec{v}_{A.i} \]
\[\vec{p}_{B.f} = 2 \frac{m_B \vec{p}_{A.i}}{(m_B + m_A)} \]

Finally

\[\vec{v}_{A.f} = \frac{m_A - m_B}{m_B + m_A} \vec{v}_{A.i} \]
\[\vec{p}_{A.f} = \vec{p}_{A.i} - \vec{p}_{B.f} \]
\[\vec{p}_{A.f} = \vec{p}_{A.i} - 2 \frac{m_B \vec{p}_{A.i}}{(m_B + m_A)} \]
\[\vec{p}_{A.f} = \left(\frac{m_A - m_B}{m_B + m_A} \right) \vec{p}_{A.i} \]
1-D Collision

Special Case: Perfectly Elastic *(all internal changes ‘bounce back’)*

Extra special case: Say B is initially stationary

System = carts A & B

![Diagram of 1-D Collision]

Initially Stationary

Initially

\[\vec{v}_{A.f} = \left(\frac{m_A - m_B}{m_B + m_A} \right) \vec{v}_{A.i} \]

finally

\[\vec{v}_{B.f} = \frac{2m_A}{(m_B + m_A)} \vec{v}_{A.i} \]

\[\vec{p}_{A.f} = \vec{p}_{B.f} \]

\[\vec{v}_{A.f} \quad \vec{v}_{B.f} \]

\[2\vec{v}_{A.i} \quad \vec{v}_{A.i} \]

\[\vec{v}_{A.i} \quad \vec{v}_{A.i} \]

\[0 \quad 1 \]

\[\frac{m_B}{m_A} \]
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Quiz</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wed.</td>
<td>10.1-.4 Introducing Collisions</td>
<td>Quiz 9</td>
<td>RE 10.a</td>
</tr>
<tr>
<td></td>
<td>L9 Multi-particle Systems</td>
<td></td>
<td>RE 10.b</td>
</tr>
<tr>
<td></td>
<td>10.6-.8 Scattering</td>
<td></td>
<td>RE 10.c</td>
</tr>
<tr>
<td>Mon.,</td>
<td>10.9-.10 Collision Complications</td>
<td></td>
<td>EP9</td>
</tr>
<tr>
<td>Lab</td>
<td>L10 Collisions 1</td>
<td></td>
<td>RE 11.a; HW10: Pr’s 13*, 21, 30, “39</td>
</tr>
<tr>
<td></td>
<td>10.5, .11 Different Reference Frames</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1 Translational Angular Momentum</td>
<td>Quiz 10</td>
<td></td>
</tr>
</tbody>
</table>

Collisions!

Short, Sharp Shocks
Fast ($v \sim c$) Collision

$\vec{p}_{p,i}$

m_p

$\vec{p}_{T,i} = 0$

m_T

$\vec{p}_{p,f}$

$\vec{p}_{T,f}$
Fast (v~c) Collision

\[\vec{p}_{p,i} = \langle p_{p,i}, 0, 0 \rangle \]
\[\vec{p}_{T,i} = 0 \]

\[m_p \]
\[m_T \]

Conservation of Momentum

\[\vec{p}_{p,f} + \vec{p}_{T,f} - \vec{p}_{p,i} = 0 \]
\[\hat{x} : p_{p,f} \cos \theta_p + p_{T,f} \cos \theta_T - p_{p,i} = 0 \]
\[\hat{y} : p_{p,f} \sin \theta_p - p_{T,f} \sin \theta_T - 0 = 0 \]

\[\vec{p}_{p,f} = \langle p_{p,f} \cos \theta_p, p_{p,f} \sin \theta_p, 0 \rangle \]

\[\vec{p}_{T,f} = \langle p_{T,f} \cos \theta_T, -p_{T,f} \sin \theta_T, 0 \rangle \]
Fast (v~c) Collision

where

\[\vec{p}_{p.f} + \vec{p}_{T.f} - \vec{p}_{p.i} = 0 \]
\[\hat{x} : p_{p.f} \cos \theta_p + p_{T.f} \cos \theta_T - p_{p.i} = 0 \]
\[\hat{y} : p_{p.f} \sin \theta_p - p_{T.f} \sin \theta_T - 0 = 0 \]

where

\[\vec{p} = \frac{m\vec{v}}{\sqrt{1-\left(\frac{v}{c}\right)^2}} \]
Fast (v~c) Collision

\[\vec{p}_{p.f} + \vec{p}_{T.f} - \vec{p}_{p.i} = 0 \]
\[\hat{x} : p_{p.f} \cos \theta_p + p_{T.f} \cos \theta_T - p_{p.i} = 0 \]
\[\hat{y} : p_{p.f} \sin \theta_p - p_{T.f} \sin \theta_T - 0 = 0 \]

where
\[\vec{p} = \frac{m\vec{v}}{\sqrt{1-(\frac{v}{c})^2}} \]

Conservation of Energy
\[(E_{p.f} + E_{T.f}) - (E_{p.i} + E_{T.i}) = 0 \]

where
\[E = \frac{mc^2}{\sqrt{1-(\frac{v}{c})^2}} \]
Fast ($v \sim c$) Collision

\[\vec{p}_{p,f} + \vec{p}_{T,f} - \vec{p}_{p,i} = 0 \]
\[\hat{x} : p_{p,f} \cos \theta_p + p_{T,f} \cos \theta_T - p_{p,i} = 0 \]
\[\hat{y} : p_{p,f} \sin \theta_p - p_{T,f} | \sin \theta_T | - 0 = 0 \]

where
\[\vec{p} = \frac{m \vec{v}}{\sqrt{1 - (\frac{v}{c})^2}} \]

Conservation of Energy
\[(E_{p,f} + E_{T,f}) - (E_{p,i} + E_{T,i}) = 0 \]
where
\[E = \frac{mc^2}{\sqrt{1 - (\frac{v}{c})^2}} \]

Conservation of Momentum
\[\vec{p}_{p,f} = \langle p_{p,f} \cos \theta_p , p_{p,f} \sin \theta_p , 0 \rangle \]
\[\vec{p}_{T,f} = \langle p_{T,f} \cos \theta_T , -p_{T,f} | \sin \theta_T | , 0 \rangle \]

CW: show \[E = \sqrt{(pc)^2 + (mc^2)^2} \]

By plugging that into it and recovering that.