

Multi-Particle System's Momentum and Center of Mass

From chapter 3
$\vec{p}_{\text {system }} \equiv \vec{p}_{1}+\vec{p}_{2}+\vec{p}_{3}+\ldots$
SO

$$
\frac{d \vec{p}_{\text {system }}}{d t}=\vec{F}_{\text {net.ext }} \quad \begin{aligned}
& \text { So the sum of all momentum in the system varies in response to } \\
& \text { external force just like the momentum of a point particle would. }
\end{aligned}
$$

Pushing the analogy further:

$$
\vec{p}_{\text {system }} \approx m_{\text {system }} " \vec{v}_{\text {system }} "
$$

What is this representative speed?

$$
\begin{aligned}
m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}+m_{3} \vec{v}_{3}+\ldots & \approx \frac{\vec{p}_{\text {system }}}{m_{\text {system }}} \approx " \vec{v}_{\text {system }} " \approx \frac{m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}+m_{3} \vec{v}_{3}+\ldots}{m_{1}+m_{2}+m_{3}+\ldots}
\end{aligned}
$$

Mass-averaged velocity of the system

$$
\begin{aligned}
& \frac{d \vec{p}_{\text {system }}}{d t}=\vec{F}_{1 \leftarrow e x t}+\vec{F}_{2 \leftarrow e x t}+\vec{F}_{3 \leftarrow e x t} \cdots
\end{aligned}
$$

Multi-Particle System's Momentum and Center of Mass
From chapter 3

$$
\vec{p}_{\text {system }} \equiv \vec{p}_{1}+\vec{p}_{2}+\vec{p}_{3}+\ldots
$$

$$
\begin{aligned}
\frac{d \vec{p}_{\text {system }}}{d t} & =\vec{F}_{\text {net.ext }} \\
\vec{p}_{\text {system }} & \approx m_{\text {system }} " \vec{v}_{\text {system }} " \\
" \vec{v}_{\text {system }} & =\frac{m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}+m_{3} \vec{v}_{3}+\ldots}{m_{1}+m_{2}+m_{3}+\ldots}
\end{aligned}
$$

What representative location in the system
 moves with this representative velocity?

$$
\begin{aligned}
\vec{v} \equiv \frac{d \vec{r}}{d t} \quad \text { so } \quad \frac{d^{\prime \prime} \vec{r}_{s y s t e m}^{\prime \prime}}{d t} & \approx \frac{m_{1} \frac{d \vec{r}_{1}}{d t}+m_{2} \frac{d \vec{r}_{2}}{d t}+m_{3} \frac{d \vec{r}_{3}}{d t}+\ldots}{m_{1}+m_{2}+m_{3}+\ldots} \\
\frac{d}{d t}\left(" \vec{r}_{\text {system }}^{\prime \prime}\right) & \approx \frac{d}{d t}\left(\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}+m_{3} \vec{r}_{3}+\ldots}{m_{1}+m_{2}+m_{3}+\ldots}\right) \\
\text { apparently } \vec{r}_{\text {system }} & \approx \frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}+m_{3} \vec{r}_{3}+\ldots}{m_{1}+m_{2}+m_{3}+\ldots} \equiv \vec{r}_{c m}
\end{aligned}
$$

Mass-averaged position of the system : Center of Mass

Multi-Particle System's Momentum and Center of Mass

$$
\begin{aligned}
& \frac{d \vec{p}_{\text {system }}}{d t}=\vec{F}_{\text {net.ext }} \\
& \vec{p}_{\text {system }} \approx m_{\text {system }} \vec{v}_{c m} \\
& \qquad \vec{v}_{c m} \approx \frac{m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}+m_{3} \vec{v}_{3}+\ldots}{m_{1}+m_{2}+m_{3}+\ldots} \\
& \vec{r}_{c m}=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}+m_{3} \vec{r}_{3}+\ldots}{m_{1}+m_{2}+m_{3}+\ldots}
\end{aligned}
$$

Multi-Particle System's Momentum and Center of Mass

 No External Force Example$$
\vec{v}_{c m}=\frac{d \vec{r}_{c m}}{d t} \Rightarrow \quad \vec{r}_{c m f}=\vec{r}_{c m, i}+\vec{v}_{c m} \Delta t
$$

Demo: RotateVibrateTranslate.py (case $3 \mathrm{w} \&$ wo cm)
Individual parts may move erratically, but center of mass moves smoothly

Constant External Force Example

$$
\frac{d\left(m_{\text {system }} \vec{v}_{c m}\right)}{d t}=\vec{F}_{n e t . e x t} \Rightarrow \vec{r}_{c m f}=\vec{r}_{c m . i}+\vec{v}_{c m . i} \Delta t+\frac{1}{2}\left(\frac{\vec{F}_{n e t}}{m_{\text {system }}}\right)(\Delta t)^{2}
$$

Demo: baton

Demo: 09_RotateVibrateTranslate.py case 5

Note: momentum principle for multi-particle system doesn't care at what point of system the force is applied and doesn't say how individual parts move relative to center of mass

Two pucks lie on ice and can slide with little friction. A string is attached to each puck and each string is pulled with the same constant force F for the same time. The string is wound around the outer edge of puck 1 but attached to the center of puck 2. They both start from rest. Try to imagine what you would see as they move. What do you think will happen in the next 3 seconds?

1) The center of 1 will move farther than 2
2) The center of 2 will move farther than 1
3) The centers of 1 and 2 will move the same distance

Now, apply the momentum principle to each puck. What does it predict should happen in the next 3 seconds?

1) The center of 1 will move farther than 2
2) The center of 2 will move farther than 1
3) The center of 1 and 2 will move the same distance

Which object has the greater total momentum (magnitude)?

1) Top object (blue)
2) Bottom object (red)
3) Their total momentum is the same

Momentum principle speaks only for center of mass motion
Sometimes you want to track motion relative to center of mass
Need a different tool: Energy

Already familiar: $E_{\text {particle }}=K+E_{\text {rest }}$

$$
\begin{gathered}
K=(\gamma-1) m c^{2} \approx \frac{1}{2} m v^{2} \\
E_{\text {rest }}=m c^{2}
\end{gathered}
$$

For system of particles:

$$
E_{\text {system }}=\sum_{\text {all.parts }}\left(K+m c^{2}\right)+\sum_{\text {all.pairs }} U
$$

Without thinking too deeply, we've blurred these two, say a nucleus "particle" / "system":

$$
\begin{gathered}
E_{\text {particle }}=K+E_{\text {rest }} \\
E_{\text {system }}=\sum_{\text {all.parts }}\left(\underset{K}{K}+m c^{2}\right)+\sum_{\text {all.pairs }} U
\end{gathered}
$$

It seems reasonable to expect we can break up the system's energy as:

$$
E_{\text {system }}=K_{c m}+\left(E_{\text {rest }}=E_{\text {int }}\right.
$$

Splitting up Kinetic

$$
\begin{aligned}
& K_{\text {total }}=K_{1}+K_{2}+K_{3}+\ldots \\
& K_{\text {total }} \approx \frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}+\frac{1}{2} m_{3} v_{3}^{2}+\ldots
\end{aligned}
$$

Where $\vec{v}_{1}=\frac{d}{d t} \vec{r}_{1}$, est.

$$
\text { But } \vec{r}_{1}=\vec{r}_{c m}+\vec{r}_{1 \leftarrow c m^{\prime}} \text { etc. }
$$

so $\quad \vec{v}_{1}=\frac{d}{d t} \vec{r}_{c m}+\frac{d}{d t} \vec{r}_{1 \leftarrow c m}$
Or $\quad \vec{v}_{1}=\vec{v}_{c m}+\vec{v}_{1 \leftarrow c m}$, etc.

$$
\begin{aligned}
& \frac{1}{2} m_{1} v_{1}^{2}=\frac{1}{2} m_{1}\left(\vec{v}_{c m}+\vec{v}_{1 \leftarrow c m}\right)^{2}=\frac{1}{2} m_{1}\left(v_{c m}^{2}+2 \vec{v}_{c m} \cdot \vec{v}_{1 \leftarrow c m}+v_{1 \leftarrow c m}^{2}\right) \\
& =\frac{1}{2} m_{1} v_{c m}^{2}+m_{1} \vec{v}_{c m} \cdot \vec{v}_{1 \leftarrow c m}+\frac{1}{2} m_{1} v_{1 \leftarrow c m}^{2}
\end{aligned}
$$

then $K_{\text {total }} \approx \frac{1}{2}\left(\sum_{i} m_{i}\right) v_{c m}^{2}+\vec{v}_{c m} \cdot\left(\sum_{i} m_{i} \vec{v}_{1 \leftarrow c m}\right)+\sum_{i}\left(\frac{1}{2} m_{i} v_{i \leftarrow c m}^{2}\right)$

$$
\begin{aligned}
& K_{\text {total }} \approx \frac{1}{2} m_{\text {total }} v_{c m}^{2}+\sum_{i}\left(\frac{1}{2} m_{i} v_{i \leftarrow c m}^{2}\right) \\
& \vec{v}_{c m}+\vec{v}_{1 \leftarrow c m}
\end{aligned}
$$

recall $\vec{v}_{c m}=\frac{\sum_{i} m_{i} \vec{v}_{i}}{m_{\text {total }}}$

$$
\text { recall } \vec{v}_{1}=\vec{v}_{c m}+\vec{v}_{1 \leftarrow c m}
$$

$$
\sum_{i} m_{i}\left(\vec{v}_{i}-\vec{v}_{c m}\right) \quad=\sum_{i} m_{i} \vec{v}_{i}-\left(\sum_{i} m_{i}\right) \vec{v}_{c m} \quad=m_{\text {total }} \vec{v}_{c m}-m_{\text {total }} \vec{v}_{c m}=0
$$

Splitting up Kinetic

$$
\begin{aligned}
& K_{\text {total }}=K_{1}+K_{2}+K_{3}+\ldots \\
& K_{\text {total }} \approx \frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}+\frac{1}{2} m_{3} v_{3}^{2}+\ldots \\
& K_{\text {total }} \approx \underbrace{\frac{1}{2} m_{c m}^{2}}_{\text {total }}+\sum_{i} \underbrace{\left(\frac{1}{2} m_{i} v_{i \leftarrow c m}^{2}\right)} \\
& K_{\text {total }} \approx K_{c m}^{\swarrow}+\sum_{i} K_{i . \text { rel }}
\end{aligned}
$$

Often convenient to resolve $\vec{v}_{i \leftarrow c m}$ into perpendicular components Towards/away from center of mass
Around center of mass $\vec{v}_{i \leftarrow c m}=v_{i \leftarrow c m . i n / \text { out }} \hat{r}_{i \leftarrow c m}+v_{i \leftarrow c m . a r o u n d} \hat{\phi}_{i \leftarrow c m}$

$$
\left(\vec{v}_{i \leftarrow c m}\right)^{2}=\left(v_{i \leftarrow c m . \text { in } / \text { out }} \hat{r}_{i \leftarrow c m}+v_{i \leftarrow c m . \text { around }} \hat{\phi}_{i \leftarrow c m}\right)^{2}=v_{i \leftarrow c m . i n / \text { out }}^{2}+v_{i \leftarrow c m . a r o u n d}^{2}
$$ 0 cross-term since they're perpendicular components

Splitting up Kinetic

$$
\begin{aligned}
& K_{\text {total }} \approx \underbrace{\frac{1}{2} m_{c m}^{2}}_{\text {total }}+\sum_{i}\left(\frac{1}{2} m_{i} v_{i \leftarrow c m}^{2}\right) \\
& K_{\text {total }} \approx K_{c m}^{\swarrow}+\sum_{i} K_{i . r e l}
\end{aligned}
$$

$$
\vec{v}_{c m} \vec{r}_{3 \leftarrow c m}
$$

$$
\vec{r}_{c m}
$$

With vibrating a spring (or bond approximated $U=\sum_{\text {all.springs }}\left(\frac{1}{2} k_{s} s^{2}+U_{\text {eq }}\right)$
as a spring), there's also potential $)$

$$
E_{\text {system }}^{K_{\text {rel }}=K_{\text {vil }}+K_{\text {rot }}} \begin{gathered}
K_{c m}+\underbrace{\left(\sum_{\text {all.parts }}\left(K_{\text {rel }}+m c^{2}\right)+\sum_{\text {all.pairs }} U\right)}_{E_{\text {int }}=E_{\text {rest }}}=K_{c m}+E_{\text {rest }} \quad \text { Just like for a particle }
\end{gathered}
$$

Which object has the greater translational kinetic energy ($\mathrm{K}_{\text {TRANS }}$)? 1) Top object (blue)
2) Bottom object (red)
3) Their translational kinetic energy is the same

Which object has the greater total kinetic energy?

1) Top object (blue)
2) Bottom object (red)
3) Their total kinetic energy is the same

In the case shown in the VPython program, what energy terms are nonzero for the system of the two balls and the spring?

1) $K_{\text {trans }}$
2) $\left(K_{\text {vib }}+U_{\text {spring }}\right)$
3) $\mathrm{K}_{\text {rot }}$
4) $\left(\mathrm{K}_{\text {vib }}+U_{\text {spring }}\right)$ and $K_{\text {rot }}$
5) $K_{\text {trans }}$ and $K_{\text {rot }}$
6) $K_{\text {trans }}$ and ($\left.K_{\text {vib }}+U_{\text {spring }}\right)$
7) $\left(K_{\text {vib }}+U_{\text {spring }}\right)$ and $K_{\text {rot }}$ and $K_{\text {trans }}$

Consider a system consisting of three particles:
$m_{\mathrm{a}}=3 \mathrm{~kg}, \quad \vec{v}_{\mathrm{a}}=\langle 11,-8,15\rangle \mathrm{m} / \mathrm{s}$
$m_{\mathrm{b}}=3 \mathrm{~kg}, \vec{v}_{\mathrm{b}}=\langle-12,11,-5\rangle \mathrm{m} / \mathrm{s}$
$m_{\mathrm{c}}=5 \mathrm{~kg}, \vec{v}_{\mathrm{c}}=\langle-23,36,18\rangle \mathrm{m} / \mathrm{s}$
$\vec{v}_{a}=\langle 11,-8,15\rangle \mathrm{m} / \mathrm{s}$

$$
m_{a}=3 \mathrm{~kg}
$$

$$
\vec{v}_{c}=\langle-23,36,18\rangle \mathrm{m} / \mathrm{s}
$$

(a) What is the total momentum of this system?
(b) What is the velocity of the center of mass of this system?
(c) What is the total kinetic energy of this system?
(d) What is the translational kinetic energy of this system?
(e) What is the kinetic energy of this system relative to the center of mass?

