Fri.	8.47 More Energy Quantization	RE 8.b
Mon.	9.12, (.8) P and En Multi-particle Systems	RE 9.a
Tues.		HW8: Ch 8 Pr's 21, 23, 27(a-c)
Wed.	9.3 Rotational Energy Quiz 8	RE 9.b
Lab	Review Exam 2 (Ch 5-8)	
Fri.	Exam 2 (Ch 5-8)	Practice Exam 2 (bring to class)

Vhere we've been: ergy on the macroscopic scale ergy on the atomic scale here we're going: Energy on the electronic scale

Mathematically like solar system, but much too small and delicate to directly see orbital radii and speeds – need another way to deduce

Hydrogen Energy Levels

Hydrogen Energy Levels: Excitation

Hydrogen Excitation: 1st in ground state

Hydrogen Excitation: 2nd Adsorbs energy from Collision

Hydrogen Excitation: 3rd Looses Energy by photon emission,

Example Atoms in Gas-Discharge Tube

06_Adsorb_emit.py.

Frank-Hertz Experiment Monitoring electron beam's *loss* of energy to the atoms

Hydrogen Gas Discharge Tube

Energy of Hydrogen's n=1 to 2 transition

Distance along tube

Here are the quantized energy levels (K+U) for an atomic or molecular object, and the object is in the "ground state" (marked by a dot). An electron with kinetic energy 6 eV is fired at the object and excites the object to the –5 eV energy state. What is the remaining kinetic energy of this electron?

a) 9 eV b) 6 eV c) 4 eV d) 3 eV

e) 2 eV

Absorption Spectrum

Colors / energies of light from the star that interact with cloud's atoms scatter; it's depleted from the star light you see.

06_spectrum.py.

A collection of some atoms objects is kept **very cold**, so that all the objects are in the ground state. Light consisting of photons with a range of energies from 1 to 7.5 eV passes through this collection of objects. What photon energies will be depleted from the light beam ("dark lines")?

Note: assume the atoms don't stay in excited states long enough to get further excited another step up from them.

```
a) 2 eV, 5 eV, 9 eV
b) 3 eV, 4 eV
c) 0.5 eV, 3 eV, 4 eV
d) 4 eV, 7 eV
e) 3 eV, 4 eV, 7 eV
```


Temperature Effects on Absorption Spectrum

T very low

-9 eV

All atoms initially in ground state; only absorption lines for transitions from it

T very high

Many states have some atoms; you see absorption lines between many states

T medium

Quantitatively Relating Light's Energy and Frequency The Photo-electric Effect

"Ionizing" metal plate Shine mono-chromatic (single color) light on metal

With low frequency light, no matter how bright, no electrons are freed, no current measured Turn up frequency; at and above some threshold frequency, f, electrons *are* freed, current Threshold frequency relates to metal plate's "ionization energy" (work function) by E = hfDeduce: light falls like rain with packets of energy related to its frequency E = hf $h = 6.6 \times 10^{-34}$ Js = 4.1×10^{-15} eVs

Example: He-Ne laser.

Gas discharge tube filled with He and Ne. They have a rich emission spectrum but the tube's length, like the string of a piano is right to help light resonate at just one frequency, 4.36×10¹⁴Hz, a rich red. How much energy does one red photon of from the He-Ne have?

This is a 0.95mW = 0.00095 J/s laser; that's the rate at which the beam of photons carry away energy. How many photons are emitted per second?

Energy

eq

Simple Harmonic Oscillator Energy spectrum & Structure

Imagine a charged particle riding

$$f = \frac{1}{2\pi} \sqrt{\frac{k_s}{m}}$$

Radiates light with the same frequency as its own oscillation $E_{light} = hf$

Mass-on-spring must *loose* this much energy

$$S_{\max.2} \quad S_{\max.1} \qquad \Delta \mathsf{E}_{\mathsf{system}} = \mathsf{E}_{\mathsf{light}} = hf$$

$$K + U_1 = U_{eq} + \frac{1}{2} k_s S_{\max.2}^2$$

$$K + U_2 = U_{eq} + \frac{1}{2} k_s S_{\max.2}^2$$

$$K + U_2 = U_{eq} + \frac{1}{2} k_s S_{\max.2}^2$$

$$K + U_3 = U_{eq} + \frac{1}{2} k_s S_{\max.3}^2$$

$$\mathsf{Etc.}$$

Simple Harmonic Oscillator Energy spectrum & Structure

Imagine a charged particle riding a mass on a spring

$$f = \frac{1}{2\pi} \sqrt{\frac{k_s}{m}}$$

We've deduced

$$(K+U)_{n} = U_{eq} + \frac{1}{2}k_{s}s_{\max,n}^{2} = E_{\min} + nhf \quad \text{where } n = 1,2,3,\dots$$
Energy Takes real Quantum Mechanics to
nail down E_{\min} : $E_{\min} = U_{eq} + \frac{1}{2}hf$

$$\downarrow = -|U_{eq}| + \frac{1}{2}k_{s}s^{2}$$

$$(K+U)_{n} = U_{eq} + hf(n+\frac{1}{2}) = U_{eq} + \hbar\omega(n+\frac{1}{2})$$

$$(K+U)_{n} = U_{eq} + \frac{1}{2}k_{s}s_{\max,n}^{2}$$

Example: Macro-scopic mass on spring

We certainly don't *notice* that a mass on a spring has only specific allowed energies, it *seems* to be able to oscillate with *any* energy / amplitude (until it breaks). Given an 0.01 kg mass on our 3 N/m spring, initially displaced 0.1m, how much energy has it got, and how big is the step to the next energy level lower?

How about a H_2 molecule, what's the energy step size for its vibrations? Roughly 10⁻²⁷ kg mass protons and 100 N/m spring constant.

Molecular Bonds

Two atoms joined by a chemical	How much energy is required to
bond can be modeled as two	raise the molecule from its first
masses connected by a spring.	excited state to the second
	excited vibrational state?
In one such molecule, it takes	1) 0.0125 eV
0.05 eV to raise the molecule from	2) 0.025 eV
its vibrational ground state to the	3) 0.05 eV
first excited vibrational energy	4) 0.10 eV
state.	5) 0.20 eV

Molecular Bonds				
Molecule A: 2 atoms of mass M _A Molecule B: 2 atoms of mass 4*M _A	Which molecule has vibrational energy levels spaced closer together?			
Stiffness of interatomic bond is approximately the same for both.	 A B the spacing is the same 			

Suppose the atoms in diatomic	Which molecule has
molecules C and D had	vibrational energy levels
approximately the same masses,	spaced closer together?
Stiffness of bond in C is 3 times as large as stiffness of bond in D.	 C D the spacing is the same

Molecular Bonds

Pb: k_s ~ 5 N/m Al: k_s ~ 16 N/m
Which vibrational energy level diagram represents Pb, and which is Al?
1) A is Pb and B is Al
2) A is Al and B is Pb
3) A is both Pb and Al
4) B is both Pb and Al

Stiffer / stronger bonds, *bigger* steps between energy levels

Type of State	Energy	
Scale		
Hadronic (quark composites)	10 ⁸ eV	
Nuclear (nucleon composites)	10 ⁶ eV	
Electronic (atoms & molecules)	1 eV	
Vibrational (molecules)	10 ⁻² eV	
Rotational (molecules)	10 ⁻⁴ eV	