Fri.	6.11, 14-17 Visualizing Electric and Rest Energy	RE 6.d,e
Mon.	Things Engineers and Physicists Do	
Tues.		EP6, HW6: Ch 6 Pr's 58, 59, 91, 99(a-c), 105(a-c)

A huge asteroid smacks into the leading edge of the Earth – stopping the Earth's orbit. Subsequently, the Earth falls straight into the sun! m_E With what speed would the Earth hit the Sun's surface? $\vec{v}_{E,i} = 0$ $r_{E \leftarrow S.i} = 1.5 \times 10^{11} m$ System= Earth + Sun

Earth + Sun
environment = none

$$V_{system \leftarrow ext} = 0$$

Not changing
$$r_{E \leftarrow S.f} = 1.5 \times 10^{11} m$$

$$m_S = 1.99 \times 10^{30} kg$$

$$r_{E \leftarrow S.f} = R_E + R_S$$

$$-7.02 \times 10^8 m$$

Active environment = none
$$\Delta E = W_{system \leftarrow ext} = 0$$

$$\Delta E = W_{system \leftarrow ext} = 0$$
Not changing
$$\Delta E_{E,S} = \Delta E_{rest,E} + \Delta E_{rest,S} + \Delta K_E + \Delta K_S + \Delta U_{E,S} = 0$$

$$= 7.02 \times 10^8 m$$

$$\Delta E_{E,S} = \Delta K_E + \Delta U_{E,S} = 0$$

$$\Delta K_E = K_{E,f} - K_{E,i} = \frac{1}{2} m_E v_{E,f}^2 \quad \Delta U_{ES} = \Delta \left(-G \frac{m_E m_s}{r_{ES}} \right) = \left(-G \frac{m_E m_s}{r_{ES,f}} \right) - \left(-G \frac{m_E m_s}{r_{ES,i}} \right)$$

$$\Delta K_{E} = K_{E.f} - K_{E.i} = \frac{1}{2} m_{E} v_{E.f} \quad \Delta U_{ES} = \Delta \left[-G - \frac{1}{r_{ES}} \right] = \left[-G - \frac{1}{r_{ES.f}} \right] - \left[-G - \frac{1}{r_{ES.i}} \right] = \left[-G - \frac{1}{r_{ES.i}} \right] - \left[-G - \frac{1}{r_{ES.i}} \right] - \left[-G - \frac{1}{r_{ES.i}} \right] = \left[-G - \frac{1}{r_{ES.i}} \right] - \left[-G - \frac{1}{r_{ES.$$

$$\Delta E_{E,S} = \frac{1}{2} m_E v_{E,f}^2 - G \frac{m_E m_s}{r_{ESf}} + G \frac{m_E m_s}{r_{ESi}} = 0$$

$$v_{E,f} = \sqrt{2Gm_s \left(\frac{1}{r_{ESf}} - \frac{1}{r_{ESi}}\right)}$$

$$= \sqrt{2(6.67 \times 10^{-11} Nm^2 / kg^2)(1.99 \times 10^{30} kg) \left(\frac{1}{7.02 \times 10^8 m} - \frac{1}{1.5 \times 10^{11} m}\right)} = 6.14 \times 10^5 m / s$$

System: comet + star Surroundings: negligible As a comet travels away from a star, how do the kinetic energy and potential energy of the system change?		
	K	U
	a) increase	decrease
	b) increase	increase
	c) decrease	increase
	d) decrease	decrease
	e) no change	no change

Force as negative gradient (3-D slope) of **Potential Energy**

small change in potential

$$dU_{1,2} = -\vec{F}_{1\to 2} \cdot d\vec{r}_{1\to 2} = -\left(F_{1\to 2.x}dx + F_{1\to 2.y}dy + F_{1\to 2.z}dz\right)$$

Say only moves in the x direction, then

$$dU_{1,2} = -F_{1\to 2.x}dx$$
 so $-\frac{dU_{1,2}}{dx} = F_{1\to 2.x}$

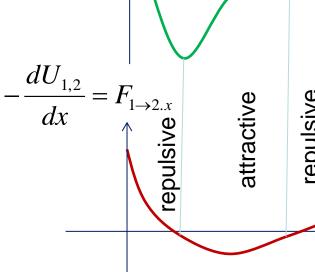
Similarly, if only moves in the y direction, then

$$dU_{1,2} = -F_{1\to 2.y}dy$$
 so $-\frac{dU_{1,2}}{dy} = F_{1\to 2.y}$

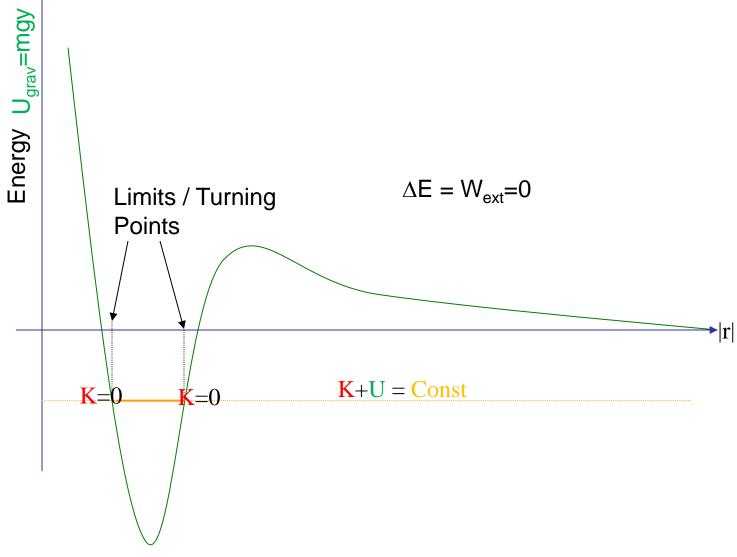
or, if only moves in the z direction, then

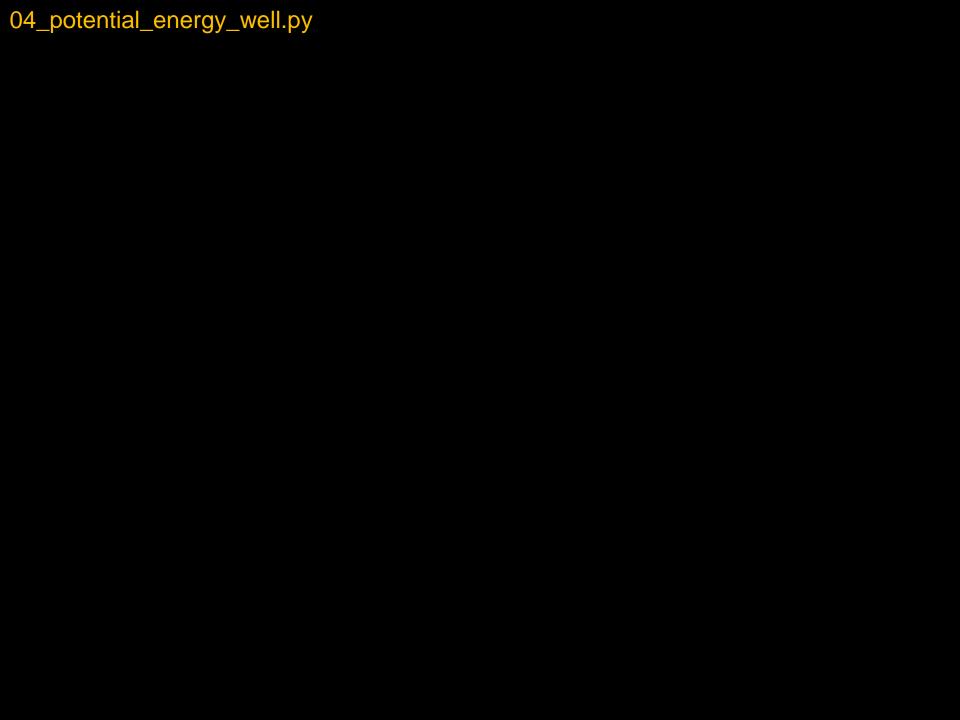
$$dU_{1,2} = -F_{1 \to 2.z}dz$$
 so $-\frac{dU_{1,2}}{dz} = F_{1 \to 2.z}$

Moving in all directions,
$$\vec{F}_{1\rightarrow 2} = \left\langle F_{1\rightarrow 2.x}, F_{1\rightarrow 2.y}, F_{1\rightarrow 2.z} \right\rangle = -\left\langle \frac{\partial U_{1,2}}{\partial x_{1\rightarrow 2}}, \frac{dU_{1,2}}{dy_{1\rightarrow 2}}, \frac{dU_{1,2}}{dz_{1\rightarrow 2}} \right\rangle$$

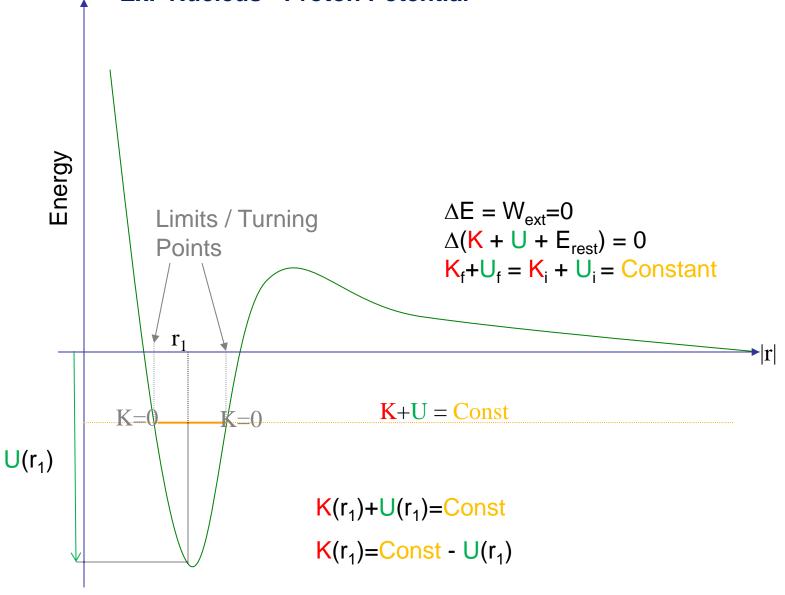


Conceptual Understanding from Energy Diagrams Roller Coaster $\Delta E = W_{ext} = 0$ Limits / Turning **Points**

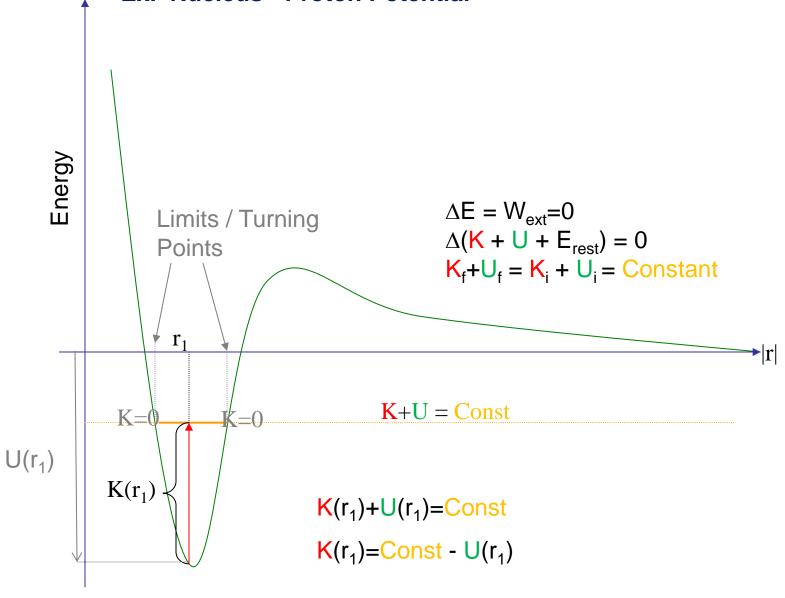




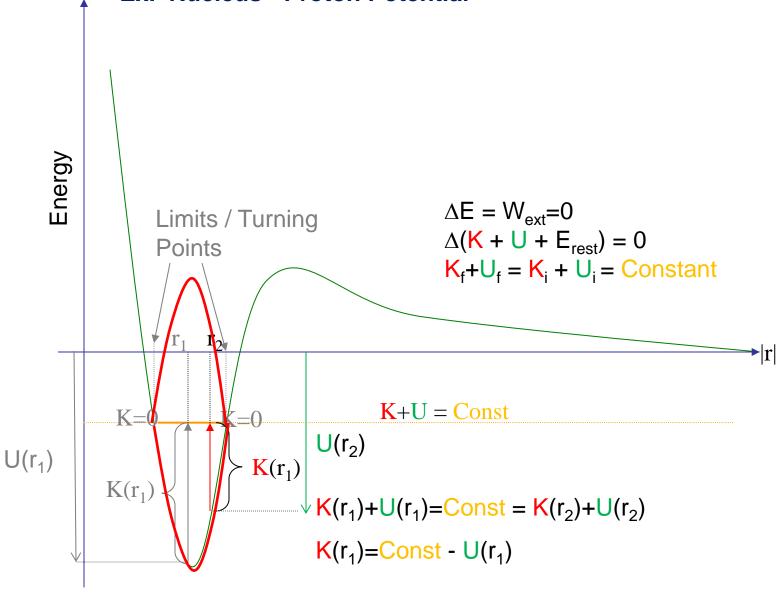
Conceptual Understanding from Energy Diagrams Ex. Nucleus - Proton Potential



Conceptual Understanding from Energy Diagrams Ex. Nucleus - Proton Potential

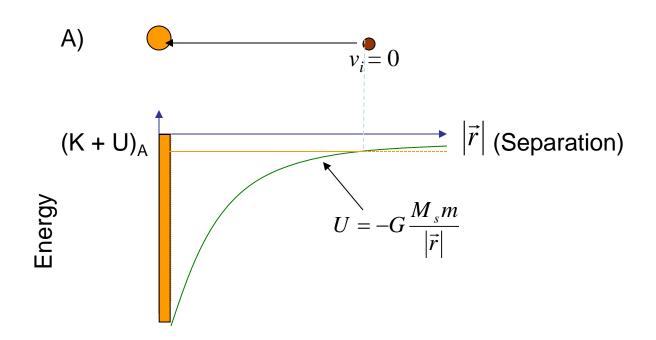


Conceptual Understanding from Energy Diagrams Ex. Nucleus - Proton Potential

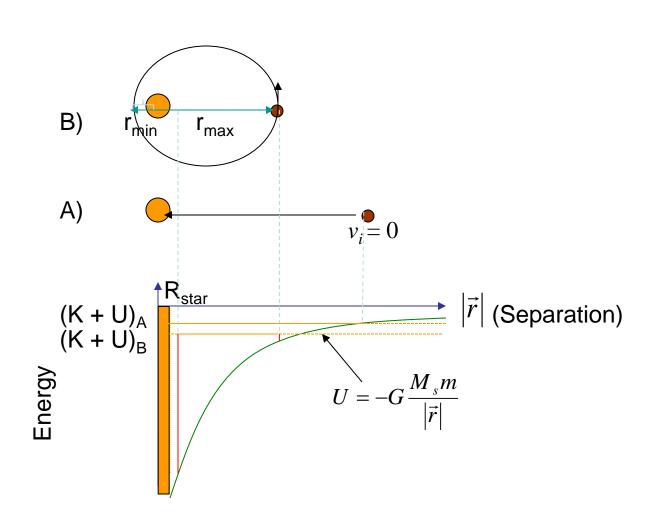


Which of the following graphs of U vs r represents the gravitational potential energy, U = -GMm/r?

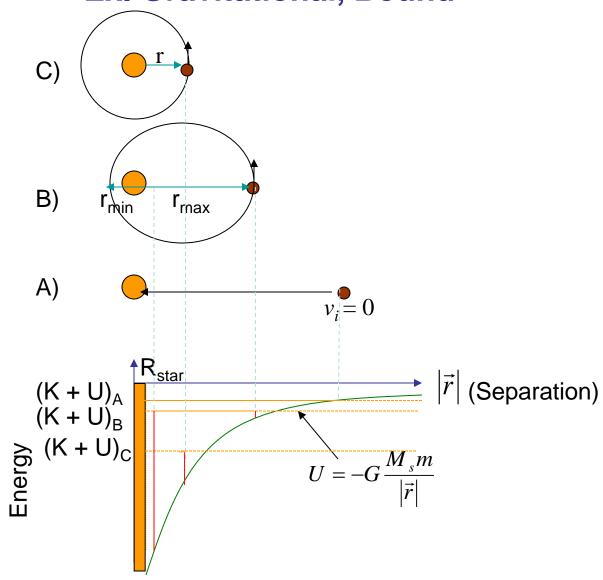
Ex. Gravitational, Bound



Ex. Gravitational, Bound

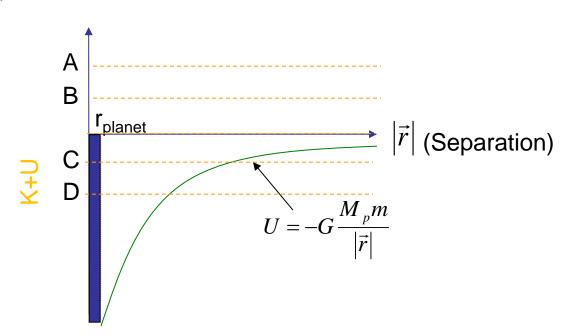


Ex. Gravitational, Bound



Ex. Gravitational, Un-Bound / Escape

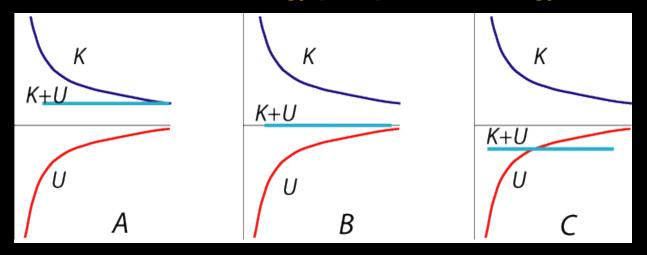
Consider an rocket launching from a planet's surface, which of the following represent *un-bound* systems (so the rocket could get away and never fall back to the planet)?



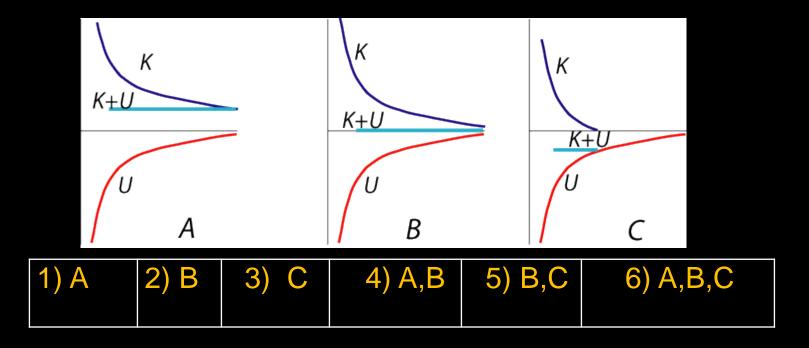
- 1. A
- 2. B
- 3. A & B
- 4. C
- 5. D
- 6. C&D
- 7. A,B,C, & D

Special Case: K + U = 0 and Escape Speed

In which graph does the cyan line correctly represent the sum of kinetic energy plus potential energy?

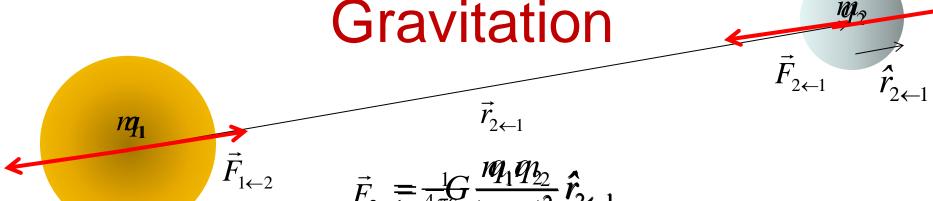


The system is a comet and a star. In which case(s) will the comet escape from the star and never return?



Collective septembers to the contractive septembers of the contrac

Gravitation



$$\vec{F}_{2\leftarrow 1} = \frac{1}{4\pi\varepsilon_o} \frac{\mathbf{M}_1 \mathbf{M}_{22}}{\left|\vec{\mathbf{r}}_{2\leftarrow 1}\right|^2} \hat{\mathbf{r}}_{2\leftarrow 1}$$

$$G = \frac{16.67}{4\pi\varepsilon_0} \times 100^{19} \frac{N \cdot m^2}{(\kappa g^2)^2} \qquad \hat{r}_{2 \leftarrow 1} = \frac{\vec{r}_{2 \leftarrow 1}}{|\vec{r}_{2 \leftarrow 1}|}$$

$$\hat{r}_{2\leftarrow \overline{1}} = \frac{\hat{r}_{2\leftarrow 1}}{|\vec{r}_{2\leftarrow 1}|}$$

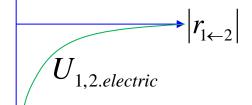
Gravitation Potential Energy

$$U_{1,2.electric}$$

$$|r_{1\leftarrow 2}|$$

$$U_{1,2} = \frac{1}{4\pi\varepsilon_o} \frac{|\mathbf{q_1 q_2}|}{|\mathbf{r_{1\leftarrow 2}}|}$$
like charges

opposite charges



Example: Ionize Hydrogen. In a hydrogen atom the electron averages around 10⁻¹⁰ m from the proton. When a hydrogen atom is ionized, the electron is stripped away. What is the change in electric potential energy when such an atom is ionized?

System= electron + proton

away. What is the change in electric potential energy when such an atom is ionized?
$$r_i = 10^{-10} m \qquad r_f \approx \infty \qquad U_{e,p.elect} = \frac{1}{4\pi\varepsilon_o} \frac{q_e q_p}{|r_{e\leftarrow p}|} \qquad \text{Active environment = none}$$

$$U_{e,p.electric} \qquad r_{e\leftarrow p} \qquad Comparison: Electric vs. Gravitational$$

$$U_{e,p.electric} \begin{vmatrix} r_{e \leftarrow p} \\ U_{e,p.elect} = \frac{1}{4\pi\varepsilon_{o}} \frac{-e^{2}}{|r_{1\leftarrow 2}|} \\ \Delta U_{e,p,elct} = \frac{1}{4\pi\varepsilon_{o}} \frac{-e^{2}}{|r_{f}|} - \frac{1}{4\pi\varepsilon_{o}} \frac{-e^{2}}{|r_{i}|} = \frac{e^{2}}{4\pi\varepsilon_{o}} \left(\frac{1}{|r_{i}|} - \frac{1}{|r_{f}|}\right) - \infty$$

$$\Delta U_{e,p,elct} = \frac{1}{4\pi\left(8.85 \times 10^{-12} \frac{C^{2}}{Nm^{2}}\right)} \left(\frac{\left(1.6 \times 10^{-19} C\right)^{2}}{10^{-10} m}\right)$$

$$Comparison:$$

$$Electric vs. Gravitational$$

$$U_{e,p.elect} = \frac{1}{4\pi\varepsilon_{o}} \frac{-e^{2}}{|r_{i\leftarrow 2}|} - \frac{1}{4\pi\varepsilon_{o}}$$

 $500 \frac{10^{-10}}{Nm^2} \int \frac{10^{-10}}{m} \int \frac{10^{-10}}{m} \int \frac{9 \times 10^9 \frac{Nm^2}{C^2} (1.6 \times 10^{-19} C)^2}{(6.7 \times 10^{-11} \frac{Nm^2}{kg^2})(9 \times 10^{-31} kg)(1.7 \times 10^{-27} kg)}$ Or in eV's (divide by electron charge)

Or in eV's (divide by electron charge)
$$= 2.3 \times 10^{-18} J_{\frac{1e}{1.6 \times 10^{-19}C}} = 14eV$$

$$\frac{U_{e,p.elect}}{U_{e,p.grav}} = 5.6 \times 10^{39}$$

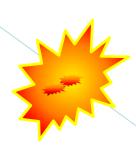
Return to Rest Energy and Mass

Pair (electron and positron) Annihilation

$$E = m_{e}c^{2} + m_{e}c^{2}$$

Application Note:

Positron Electron Tomography (PET) Scans



initial final
$$e^- + e^+ \rightarrow \gamma + \gamma$$

Electron and positron Two photons (light pulses)

$$F = 2m_e c^2 = 2E_{\gamma}$$

$$|r_{e \leftarrow p}| \quad (0.511 MeV / c^2)c^2 = E_{\gamma}$$

$$0.511 MeV = E_{\gamma}$$

Return to Rest Energy and Mass

Neutron Decay

initial final
$$n^0 \rightarrow p^+ + e^- + \overline{\nu}_a$$

$$n \rightarrow p + e + v_e$$

neutron Proton, electron, and neutrino

Nearly massless Finally infinitely far apart
$$E = m_n c^2 = m_e c^2 + m_p c^2 + m_v c^2 + K_e + K_p + K_v + U_{e,p} + U_{e,v} + U_{v,p}$$

$$E = m_n c^2 = m_e c^2 + m_p c^2 + K_e + K_p + K_v$$

 $r_i \approx \infty$

 $E = m_n c^2$

$$(K_e + K_p + K_v) = m_n c^2 - (m_e c^2 + m_p c^2)$$

$$=939.6MeV - (0.511MeV + 938.3MeV) = 0.79MeV$$

Mass as Energy and Energy as Mass

Box o' decaying Neutrons

$$\begin{array}{c|cccc}
\hline
 & r_f \approx \infty \\
\hline
 & U_{e,p} & |r_{e \leftarrow p}| & E = E_{rest} = m_{box}c^2 & = \sum_{v=0}^{\infty} \left((m_e + m_p + m_v)c^2 + K_e + K_p + K_v + U_{e,p} \right)
\end{array}$$

Viewed from outside

Peaking inside

Box's mass includes internal kinetic and potential energies

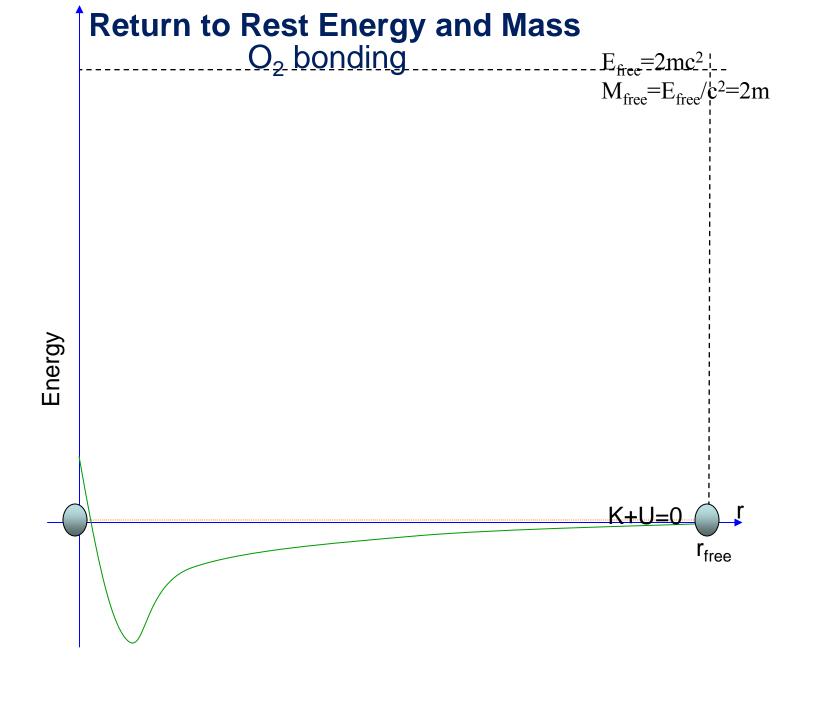
What is Mass

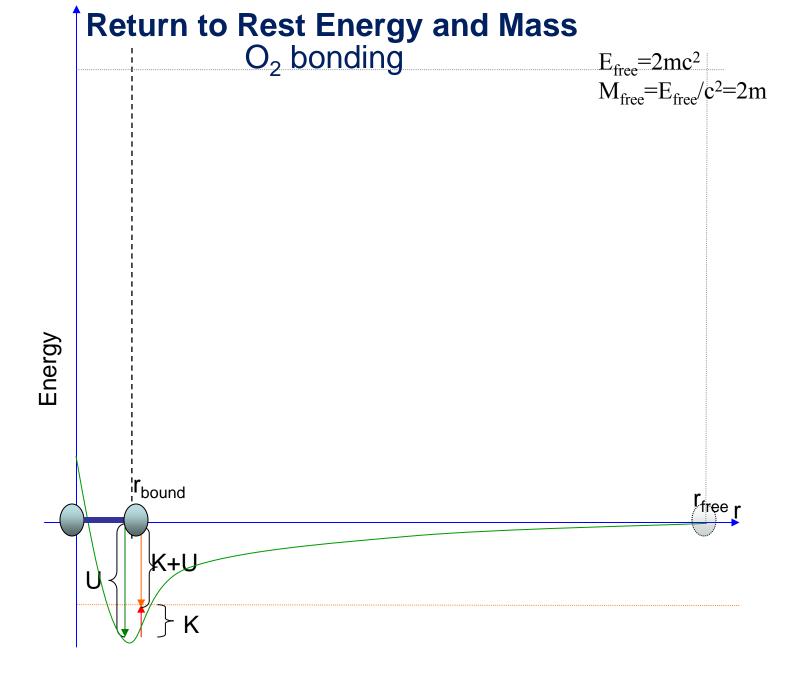
Quantification of...

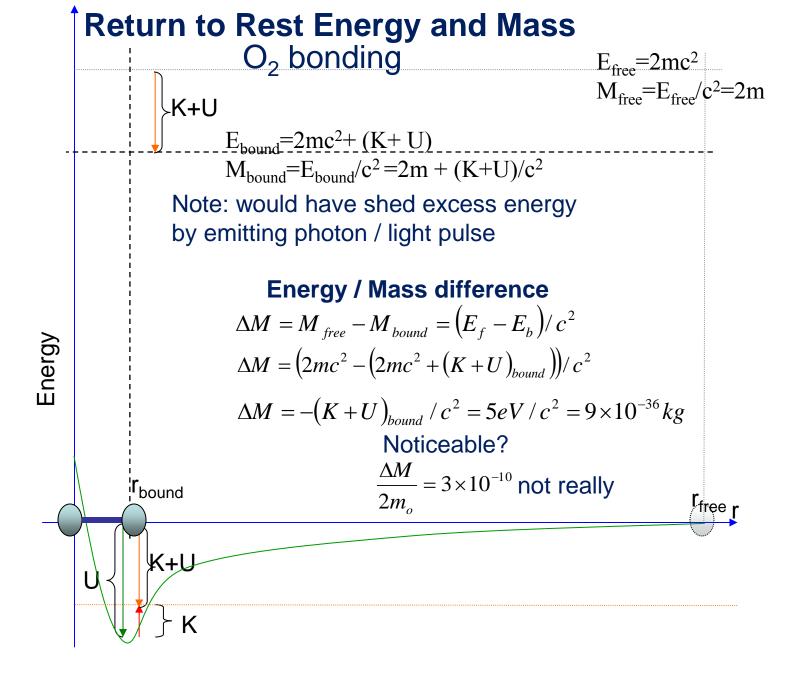
Gravitational 'charge'

Inertia

Internal Energy







Return to Rest Energy and Mass

Nuclear Binding: Iron nucleus

If an iron nucleus were disintegrated, how much K + U energy would be consumed /produced?

initial final
$$Fe_{56}^{26} \rightarrow 26\,p^{+} + 30n \qquad M_{Fe,nuc} = 52107 MeV/c^{2}$$
 Iron nucleus Protons and neutrons
$$m_{n} = 939.9 MeV/c^{2}$$
 Noticeable?
$$E_{i} = E_{f} \qquad m_{p} = 938.3 MeV/c^{2}$$

$$E_{r.Fe} = \sum_{all.\,particles} (E_{r} + K) + \sum_{all.\,pairs} U$$

$$m_{Fe}c^{2} = 26 \cdot m_{p}c^{2} + 30 \cdot m_{n}c^{2} + \left(\sum_{all.\,particles} K + \sum_{all.\,pairs} U\right)$$

$$m_{Fe}c^{2} - \left(26 \cdot m_{p}c^{2} + 30 \cdot m_{n}c^{2}\right) = \left(\sum_{all.\,particles} K + \sum_{all.\,pairs} U\right)$$

$$52107 MeV - \left(26 \cdot (939.9 MeV) + 30 \cdot (938.3 MeV)\right) = \left(\sum_{all.\,particles} K + \sum_{all.\,pairs} U\right)$$

$$-482 MeV = \left(\sum_{all.\,particles} K + \sum_{all.\,pairs} U\right)$$

$$all.\,particles$$

$$all.\,pairs$$

$$52107 MeV - (26 \cdot (939.9 MeV) + 30 \cdot (938.3 MeV)) = \left(\sum_{all. particles} K + \sum_{all. pairs} U\right)$$

$$-482MeV = \left(\sum_{all.particles} K + \sum_{all.pairs} U\right)$$

Rest and Electric-Potential and Kinetic

A U-235 nucleus is struck by a slow-moving neutron, so that the merge and become U-236, with mass M_{U-236} This nucleus is unstable to falling apart – fission. One way it could do so is to first slosh into something of a dumbbell shape, now most of the into two symmetric nuclei, Pd-118, with mass M_{Pd-118} , each has ½ the original number of protons, i.e., q_{Pd} = 46e. Having fallen apart, the two palladium nuclei no longer experience a Strong interaction holding them together, just the Electric repulsion of each other's protons. Subsequently, they accelerate away.

- a) What's the final speed of one of the Pd atoms, when they have sped far, far apart?
- b) What is the distance between the Pd atoms just after fission?

Mon. Things Engineers and Physicists Do Tues. EP6, HW6: Ch 6 Pr's 58, 59, 91, 99(a-c), 105(a-c)	Fri.	6.11, 14-17 Visualizing Electric and Rest Energy	RE 6.d,e
58, 59, 91, 99(a-c),	Mon.	Things Engineers and Physicists Do	
	Tues.		EP6, HW6: Ch 6 Pr's
105(a-c)			58, 59, 91, 99(a-c),
			105(a-c)