Fri.	$6.11,14-17$ Visualizing Electric and Rest Energy	RE 6.d,e
Mon.	Things Engineers and Physicists Do	EP6, HW6: Ch 6 Pr's 58, 59, 91,
Tues.		$99(\mathrm{a}-\mathrm{c}), 105(\mathrm{a}-\mathrm{c})$

A huge asteroid smacks into the leading edge of the Earth - stopping the Earth's orbit. Subsequently, the Earth falls straight into the sun! With what speed would the Earth hit the Sun's surface?

$$
\vec{v}_{E . i}=0
$$

System $=$ Earth + Sun

$$
\vec{\nu}_{E, f}=?
$$

Active environment = none

$$
\Delta E=W_{\text {system ext }}=0_{\text {Not changing }}
$$

$$
\Delta E_{E, S}=\Delta E_{\text {rest } E}+\Delta E_{\text {rest } . S}+\Delta K_{E}+\Delta K_{S}+\Delta U_{E, S}=0
$$

$$
\Delta E_{E, S}=\Delta K_{E}+\Delta U_{E, S}=0
$$

$$
\begin{aligned}
& \Delta E_{E, S}=\Delta K_{E}+\Delta U_{E, S}=0 \\
& \Delta K_{E}=K_{E . f}-K_{E . i}=\frac{1}{2} m_{E} v_{E . f}^{2} \quad \Delta U_{E S}=\Delta\left(-G \frac{m_{E} m_{s}}{r_{E S}}\right)=\left(-G \frac{m_{E} m_{s}}{r_{E S . f}}\right)-\left(-G \frac{m_{E} m_{s}}{r_{E S . i}}\right.
\end{aligned}
$$

$$
\Delta E_{E, S}=\frac{1}{2} m_{E} v_{E . f}^{2}-G \frac{m_{E} m_{s}}{r_{E S f}}+G \frac{m_{\Xi} m_{s}}{r_{E S i}}=0
$$

$$
v_{E . f}=\sqrt{2 G m_{s}\left(\frac{1}{r_{E S f}}-\frac{1}{r_{E S i}}\right)}
$$

$$
=\sqrt{2\left(6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}\right)\left(1.99 \times 10^{30} \mathrm{~kg}\right)\left(\frac{1}{7.02 \times 10^{8} \mathrm{~m}}-\frac{1}{1.5 \times 10^{11} \mathrm{~m}}\right)}=6.14 \times 10^{5} \mathrm{~m} / \mathrm{s}
$$

Force as negative gradient (3-D slope) of

Potential Energy

small change in potential

$$
d U_{1,2}=-\vec{F}_{1 \rightarrow 2} \cdot d \vec{r}_{1 \rightarrow 2}=-\left(F_{1 \rightarrow 2 . x} d x+F_{1 \rightarrow 2 . y} d y+F_{1 \rightarrow 2 . z} d z\right)
$$

Say only moves in the x direction, then

$$
d U_{1,2}=-F_{1 \rightarrow 2 . x} d x \quad \text { so } \quad-\frac{d U_{1,2}}{d x}=F_{1 \rightarrow 2 . x}
$$

Conceptual Understanding from Energy Diagrams Roller Coaster

04_potential_energy_well.py
04_potential_energy_well.py
-

[^0]\square
\square $\operatorname{lol}+\operatorname{lol}+2$ < \square \square \square \square \square \square $+$ \square $+$ \square $+$ $+$ \square \square

 $+$ $($


```
*
```

(
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
 \square \square ((\square (\square (\square \square \square \square ((\square \square O
\qquad
\qquad
\qquad
0 \qquad
O
\square
(\square \square \square \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Conceptual Understanding from Energy Diagrams

Ex. Nucleus - Proton Potential

Conceptual Understanding from Energy Diagrams

Ex. Nucleus - Proton Potential

Conceptual Understanding from Energy Diagrams

Which of the following graphs of U vs r represents the

 gravitational potential energy, $U=-G M m / r$?

Energy Diagrams

Ex. Gravitational, Bound

A)

Energy Diagrams

Ex. Gravitational, Bound

Energy Diagrams

Energy Diagrams

Ex. Gravitational, Un-Bound / Escape

Consider an rocket launching from a planet's surface, which of the following represent un-bound systems (so the rocket could get away and never fall back to the planet)?

1. A
2. B
3. $\mathrm{A} \& \mathrm{~B}$
4. C
5. D
6. $C \& D$
7. $A, B, C, \& D$

In which graph does the cyan line correctly represent the sum of kinetic energy plus potential energy?

The system is a comet and a star. In which case(s) will the comet escape from the star and never return?

Gravitation

$n \not q_{1}$

$$
\vec{r}_{2 \leftarrow 1}
$$

$$
\vec{F}_{1 \leftarrow 2} \quad \vec{F}_{2 \leftarrow 1}=\frac{1}{4 \pi e_{0}} \frac{m q_{1} \eta_{22}}{\left|\vec{r}_{2 \leftarrow 1}\right|^{2}} \hat{r}_{2 \leftarrow 1}
$$

GraviElatiotrad Potential Energy

like charges
opposite charges

Example: Ionize Hydrogen. In a hydrogen atom the electron averages around $10^{-10} \mathrm{~m}$ from the proton. When a hydrogen atom is ionized, the electron is stripped away. What is the change in electric potential energy when such an atom is ionized?

$$
\begin{aligned}
& r_{i}=10^{-10} m \quad r_{f} \approx \infty \quad U_{e, p . e l e c t}=\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{e} q_{p}}{\left|r_{e \leftarrow p}\right|} \\
& U_{e, p . e \text { electric }}=\frac{1}{4 \pi \varepsilon_{o}} \frac{-e^{2}}{\left|r_{1 \leftarrow 2}\right|} \\
& \Delta U_{e, p, e l c t}=\frac{1}{4 \pi \varepsilon_{o}} \frac{-e^{2}}{\left|r_{f}\right|}-\frac{1}{4 \pi \varepsilon_{o}} \frac{-e^{2}}{\left|r_{i}\right|}=\frac{e^{2}}{4 \pi \varepsilon_{o}}\left(\frac{1}{\left|r_{i}\right|}-\frac{1}{\left|\eta_{f}\right|}\right)^{0} \\
& \Delta U_{e, p, e l c t}=\frac{1}{4 \pi\left(8.85 \times 10^{-12} \frac{c^{2}}{N m^{2}}\right)}\left(\frac{\left(1.6 \times 10^{-19} C\right)^{2}}{10^{-10} m}\right)
\end{aligned}
$$

System $=$ electron + proton

$$
\Delta U_{e, p, e l c t}=2.3 \times 10^{-18} \mathrm{~J}
$$

Or in eV's (divide by electron charge)

$$
=2.3 \times 10^{-18} J \frac{1 e}{1.6 \times 10^{-19} \mathrm{C}}=14 \mathrm{eV}
$$

$$
\frac{U_{e, p . \text { elect }}}{U_{e, p . \text { grav }}}=5.6 \times 10^{39}
$$

Return to Rest Energy and Mass

Pair (electron and positron) Annihilation

Application Note:

Positron Electron Tomography (PET)

Scans

$$
\underset{\text { initial final }}{e^{-}+e^{+} \rightarrow \gamma+\gamma}
$$

Electron and positron Two photons (light pulses)

$$
E=2 m_{e} c^{2}=2 E_{\gamma}
$$

$$
U_{e, p}\left|r_{e \leftarrow p}\right| \quad\left(0.511 \mathrm{MeV} / c^{2}\right) c^{2}=E_{\gamma}
$$

$$
0.511 \mathrm{MeV}=E_{\gamma}
$$

Return to Rest Energy and Mass Neutron Decay

initial final

$$
r_{i} \approx \infty \quad n^{0} \rightarrow p^{+}+e^{-}+\bar{v}_{e}
$$

$E=m_{n} c^{2} \quad$ neutron Proton, electron, and neutrino
Nearly massless
Finally infinitely far apart

$$
E=m_{n} c^{2}=m_{e} c^{2}+m_{p} c^{2}+m_{V} c^{2}+K_{e}+K_{p}+K_{v}+U_{e, p}+U_{e, v}+U_{\nabla, p}
$$

$$
E=m_{n} c^{2}=m_{e} c^{2}+m_{p} c^{2}+K_{e}+K_{p}+K_{v}
$$

$$
\left(K_{e}+K_{p}+K_{v}\right)=m_{n} c^{2}-\left(m_{e} c^{2}+m_{p} c^{2}\right)
$$

$$
\left.=939.6 \mathrm{MeV}-\underset{\mathrm{pt}_{ \pm} \mathrm{V}_{e}}{(0.511 \mathrm{MeV}}+938.3 \mathrm{MeV}\right)=0.79 \mathrm{MeV}
$$

Mass as Energy and Energy as Mass

Box o' decaying Neutrons

$$
\frac{r_{f} \approx \infty}{\underset{U_{e, p}\left|r_{e \leftarrow p}\right|}{ } \quad \square=E_{\text {rest }}=m_{\text {box }} c^{2} .}
$$

Viewed from outside
Box's mass includes internal kinetic and potential energies

What is Mass

Quantification of...

Gravitational 'charge'
Inertia
Internal Energy
†Return to Rest Energy and Mass
O_{2} bonding

$\mathrm{K}+\mathrm{U}=0$
$r_{\text {free }}$
†Return to Rest Energy and Mass
O_{2} bonding $\quad \mathrm{E}_{\text {free }}=2 \mathrm{mc}^{2}$
$\mathrm{M}_{\text {free }}=\mathrm{E}_{\text {free }} / \mathrm{c}^{2}=2 \mathrm{~m}$

Energy

Return to Rest Energy and Mass
 Nuclear Binding: Iron nucleus

If an iron nucleus were disintegrated, how much $\mathrm{K}+\mathrm{U}$ energy would be consumed/produced?
initial final

$$
F e_{56}^{26} \rightarrow 26 p^{+}+30 n
$$

Iron nucleus Protons and neutrons
Noticeable?

$$
\frac{\Delta m c^{2}}{m_{F e} c^{2}}=0.009 \approx 1 \%
$$

yes

$$
E_{i}=E_{f}
$$

Useful info $M_{\text {Fe.,иис }}=52107 \mathrm{MeV} / \mathrm{c}^{2}$ $m_{n}=939.9 \mathrm{MeV} / \mathrm{c}^{2}$

$$
\left.\begin{array}{rl}
m_{F e} c^{2}-\left(26 \cdot m_{p} c^{2}+30 \cdot m_{n} c^{2}\right) & =\left(\sum_{\text {all.particles }} K+\sum_{\text {all.pairs }} U\right. \\
52107 \mathrm{MeV}-(26 \cdot(939.9 M e V)+30 \cdot(938.3 M e V)) & =\left(\sum_{\text {all.particles }} K+\sum_{\text {all.pairs }} U\right. \\
-482 M e V & =\left(\sum_{\text {all.particles }} K+\sum_{\text {all.pairs }} U\right.
\end{array}\right)
$$

Rest and Electric-Potential and Kinetic

A U-235 nucleus is struck by a slow-moving neutron, so that the merge and become U236, with mass M_{U-236} This nucleus is unstable to falling apart - fission. One way it could do so is to first slosh into something of a dumbbell shape, now most of the into two symmetric nuclei, Pd-118, with mass $M_{P d-118}$, each has $1 / 2$ the original number of protons, i.e., $q_{P d}=46 e$. Having fallen apart, the two palladium nuclei no longer experience a Strong interaction holding them together, just the Electric repulsion of each other's protons. Subsequently, they accelerate away.
a) What's the final speed of one of the Pd atoms, when they have sped far, far apart?
b) What is the distance between the Pd atoms just after fission?

Fri.	$6.11,14-17$ Visualizing Electric and Rest Energy	RE 6.d,e
Mon.	Things Engineers and Physicists Do	EP6, HW6: Ch 6 Pr's
Tues.		$58,59,91,99(\mathrm{a}-\mathrm{c})$,
		$105(\mathrm{a}-\mathrm{c})$

[^0]:

