Wed.	6.1-.4 (.21) Introducing Energy \& Work Quiz 5 Lab: Buoyancy, Circles \& Pendulums	RE 6.a
Fri.,	laptop	
Columbia Rep 3pm, here		

motion is neither created nor destroyed, but transferred via interactions.

Understanding Work:

 Scalar or Dot Product as sum of products of components$$
W=\vec{F} \cdot \Delta \vec{r}=F_{x} \Delta x+F_{y} \Delta y+F_{z} \Delta z
$$

Understanding Work:

Scalar or Dot Product as projection of one vector onto another - product of magnitudes and cosine

$$
\begin{gathered}
W=\vec{F} \cdot \Delta \vec{r}=F_{x} \Delta x+F_{y} \Delta y+F_{z} \Delta z \\
\vec{F} \cdot \Delta \vec{r}=F_{x} \Delta x^{\prime}+F_{y^{\prime}} \Delta y^{\prime}+F_{z^{\prime}} \Delta z^{\prime}
\end{gathered}
$$

Understanding Work: conceptual - non-physicist def

Work is the product of effort and achievement
Both in the same direction, it's good (+) work
Both opposite directions, it's bad (-) work
Both unrelated directions, it's no (0) work
One non-existent, it's no (0) work

Understanding Work: conceptual -physicist def

Sysiphus Pushes rock up- $W_{r \leftarrow S}=\vec{F}_{r \leftarrow S} \bullet \Delta \vec{r}_{r}$

Rock goes up hill

$$
W_{r \leftarrow S}=F_{x . r \leftarrow S} \Delta x_{r}+0 \cdot 0+0 \cdot 0>0 \quad+\text { work }
$$

Rock stays put

$$
W_{r \leftarrow S}=F_{x . r \leftarrow S} \cdot 0+0 \cdot 0+0 \cdot 0=0 \quad 0 \text { work }
$$

Rock rolls down hill

$$
W_{r \leftarrow S}=F_{x . r \leftarrow S} \cdot(-|\Delta x|)+0 \cdot 0+0 \cdot 0<0-\text { work }
$$

Rock slides sideways

$$
W_{r \leftarrow S}=F_{x . r \leftarrow S} \cdot 0+0 \cdot 0+0 \cdot \Delta z=0 \quad 0 \text { work }
$$

Understanding Work: conceptual -physicist def

Sysiphus Pushes rock up- $W_{r \leftarrow S}=\vec{F}_{r \leftarrow S} \bullet \Delta \vec{r}_{r}$ hill \hat{y}

$$
\begin{array}{ll}
\vec{F}_{r \leftarrow S}^{\hat{x}} W_{r \leftarrow S}=F_{x, r \leftarrow S} \Delta x_{r}+F_{y, r \leftarrow s} \Delta y_{r}+F_{z, r \leftarrow S} \Delta z_{r} \\
W_{r \leftarrow S}=F_{x, r \leftarrow S} \Delta x_{r}+0 \cdot 0+0 \cdot 0>0 & + \text { work } \\
W_{r \leftarrow S}=F_{x, r \leftarrow S} \cdot 0+0 \cdot 0+0 \cdot 0=0 & 0 \text { work } \\
W_{r \leftarrow S}=F_{x, r \leftarrow S} \cdot(-|\Delta x|)+0 \cdot 0+0 \cdot 0<0 & \text { - work } \\
W_{r \leftarrow S}=F_{x, r \leftarrow S} \cdot 0+0 \cdot 0+0 \cdot \Delta z=0 & 0 \text { work }
\end{array}
$$

Work is the product of Force and Displacement
Both in the same direction, it's good (+) work
Both opposite directions, it's bad (-) work
Both unrelated directions, it's no (0) work
One non-existent, it's no (0) work

On a space station, you pushed a box that was at rest at location $<0,0,10>$ m to location $<0,0,14>\mathrm{m}$, applying a force $<0,0,5>\mathrm{N}$. How much work did you do on the box?

1) $\mathrm{W}=20 \mathrm{~J}$
2) $\mathrm{W}=50 \mathrm{~J}$
3) $W=70 \mathrm{~J}$
4) $\mathrm{W}=140 \mathrm{~J}$
5) Not enough information

Assuming no other forces applied to the box What happened?

1) The box slowed down.
2) The box sped up.
3) The box moved at constant speed.

Next your partner pushed back on the moving box with a force $<0,0,-3>\mathrm{N}$. After the box had moved from $<0,0,14>\mathrm{m}$ to $<0,0,16>\mathrm{m}$. What happened?

1) The box slowed down.
2) The box sped up.
3) The box moved at constant speed.

You move an object from $<3,7,4>m$ to $<2,10,12>m$, applying a force $<10,-20,30>N$. How much work do you do?

1) 10 J
2) 170 J
3) $<-10,-60,240>$ J
4) $<30,-140,120>$ J
5) $\sqrt{(-10)^{2}+(-20)^{2}+(30)^{2}} \mathrm{~J}$

Work Example: Work with Angle

A kid pulls a sled at a constant speed by a rope at a 45° angle across ice for 10 m . If she pulls with an 11.5 N force, How much work does she do on the sled?

System: Sled
$\left|F_{\text {sled } \leftarrow \text { rope }}\right|=11.5 \mathrm{~N}$
initial $\theta=45^{\circ} \quad$ final

$$
\Delta \vec{r}_{\text {sled }}=(10 m) \hat{x}
$$

$$
\begin{aligned}
& W_{\text {sled } \leftarrow \text { rope }}=\int_{i}^{f} \vec{F}_{\text {sled } \leftarrow \text { rope }} \cdot d \vec{r}_{\text {sled }} \\
& W_{\text {sled } \leftarrow \text { rope }}=\vec{F}_{\text {sled } \leftarrow \text { rope }} \cdot \Delta \vec{r}_{\text {sled }} \\
& \text { Recall } \\
& W=\vec{F} \cdot \Delta \vec{r}=F_{x} \Delta x+F_{y} \Delta y+F_{z} \Delta z
\end{aligned}
$$

$$
\vec{F} \cdot \Delta \vec{r}=|\vec{F}| \cdot|\Delta \vec{r}| \cos \theta_{F \leftarrow r}
$$

$$
W_{\text {sled } \leftarrow \text { rope }}=\left|\vec{F}_{\text {sled } \leftarrow \text { rope }} \| \Delta r_{\text {sled }}\right| \cos \theta
$$

$$
W_{\text {sled } \leftarrow \text { rope }}=(11.5 N)(10 m) \cos 45^{\circ}
$$

$$
W_{\text {sled } \leftarrow \text { rope }}=81.3 \mathrm{Nm}=81.3 \mathrm{~J}
$$

Work Energy Relation
Energy $\longleftarrow \int_{i} \frac{d p_{s y s}}{d t} \cdot d \vec{r}_{s y s}=\int_{i} \sum_{\text {all }} \vec{F}_{\rightarrow s y s} \cdot d \vec{r}_{s y s} \longrightarrow$ Work

You won't have to do anything like this for a few years

$$
\Delta E \equiv \int_{i}^{f} \frac{d \vec{p}_{s y s}}{d t} \cdot d \vec{r}_{s y s}=\int_{i}^{f} d \vec{p} \cdot \frac{d \vec{r}}{d t}=\int_{i}^{f} d \vec{p} \cdot \vec{v}
$$

$$
\text { SO } \vec{v}=\frac{\vec{p} / m}{\sqrt{1+\left(\frac{\vec{p}}{m c}\right)^{2}}}
$$

$$
\Delta E=\int_{i}^{f} d \vec{p} \cdot \vec{v}=\int_{i}^{f} d \vec{p} \cdot \frac{\vec{p} / m}{\sqrt{1+\left(\frac{p}{m c}\right)^{2}}}=m c^{2} \int_{i}^{f} d\left(\frac{\vec{p}}{m c}\right) \cdot \frac{(\vec{p} / m c)}{\sqrt{1+\left(\frac{p}{m c}\right)^{2}}}
$$

Form of

$$
m c^{2} \int_{i}^{f} \frac{x d x}{\sqrt{1+x^{2}}}=m c^{2} \int_{i}^{f} \frac{\frac{1}{2} d x^{2}}{\sqrt{1+x^{2}}}=\left.m c^{2} \sqrt{1+x^{2}}\right|_{i} ^{f}
$$

sub.-ing back in $\ldots \Delta E=m_{f} c^{2} \sqrt{1-\left(\frac{p_{f}}{c}\right)^{2}}-m_{i} c^{2} \sqrt{1-\left(\frac{p_{i}}{c}\right)^{2}}$

Work Energy Relation

$$
\begin{aligned}
& \text { Energy } \longleftarrow \int_{i}^{f} \frac{d \vec{p}_{s y s}}{d t} \cdot d \vec{r}_{s y s}=\int_{i}^{f} \sum_{\text {all }} \vec{F}_{\rightarrow s y s} \cdot d \vec{r}_{s y s} \longrightarrow \text { Work } \\
& \qquad \Delta E \equiv \int_{i}^{f} \frac{d \vec{p}_{s y s}}{d t} \cdot d \vec{r}_{s y s}=\int_{i}^{f} d \vec{p} \cdot \frac{d \vec{r}}{d t}=\int_{i}^{f} d \vec{p} \cdot \vec{v} \\
& \begin{array}{l}
\text { You won't have to do } \\
\text { anything like this for a few } \\
\text { years }
\end{array} \\
& \text { where } \vec{p} \equiv \frac{m \vec{v}}{\sqrt{1-\left(\frac{|\vec{v}|}{c}\right)^{2}}}
\end{aligned}
$$

$$
\gamma \equiv \frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}
$$

$E=\gamma m c^{2}$

Consider an electron (mass $9 \mathrm{e}-31 \mathrm{~kg}$) moving with speed $\mathrm{v}=0.9 \mathrm{c}$. What is its total (particle) energy?

1) $7.3 \mathrm{e}-31 \mathrm{~J}$
2) $8.1 \mathrm{e}-14 \mathrm{~J}$
3) $1.05 \mathrm{e}-13 \mathrm{~J}$
4) $1.86 \mathrm{e}-13 \mathrm{~J}$
5) $2.7 \mathrm{e} 8 \mathrm{~m} / \mathrm{s}$

Particle's total energy: $E=\gamma m c^{2}$

$$
\gamma \equiv \frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}
$$

When at rest: $v=0 \Rightarrow \gamma=1$

$$
E_{r e s t} \equiv m c^{2}
$$

Energy associated just with motion: Kinetic Energy

$$
\begin{aligned}
& K=E_{\text {(total) }}-E_{\text {rest }} \\
& K=\gamma m c^{2}-m c^{2} \\
& K=(\gamma-1) m c^{2}
\end{aligned}
$$

Consider an electron (mass $9 \mathrm{e}-31 \mathrm{~kg}$) moving with speed $\mathrm{v}=0.9 \mathrm{c}$.
a) What is its rest energy?
b) What is its (total) particle energy?
c) What is its Kinetic energy?

High-speed Example: An electron (mass $9 \mathrm{e}-31 \mathrm{~kg}$) is traveling at a speed of $0.95 c$ in an electron accelerator. An electric force of $1.6 \mathrm{e}^{-13} \mathrm{~N}$ is applied in the direction of motion while the electron travels a distance of 2 m . We want to determine the new speed (as a multiple of c) for the electron, using the energy principle.

Work Energy Relation
$\mathrm{v} \ll \mathrm{c}$ approximation

$$
\begin{gathered}
\text { Energy } \longleftarrow \int_{i}^{\int_{i}} \frac{d \vec{p}_{s y s}}{d t} \cdot d \vec{r}_{s y s}=\int_{i}^{f} \sum_{\text {all }} \vec{F}_{\rightarrow s y s} \cdot d \vec{r}_{s y s} \longrightarrow \text { Work } \\
\Delta E \equiv \int_{i}^{f} \frac{d \vec{p}_{s y s}}{d t} \cdot d \vec{r}_{s y s}=\int_{i}^{f} d \vec{p} \cdot \frac{d \vec{r}}{d t}=\int_{i}^{f} d \vec{p} \cdot \vec{v} \\
\text { If } \mathrm{V} \ll \mathrm{C} \quad \vec{p} \approx m \vec{v}
\end{gathered} \quad \begin{aligned}
& \Delta E=\int_{i}^{f} d \vec{p} \cdot \vec{v} \approx m \int_{i}^{f} d \vec{v} \cdot \vec{v}=\left.\frac{1}{2} m v^{2}\right|_{i} ^{f}=\begin{array}{l}
\text { (approximate) } \\
\begin{array}{l}
\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2} \\
\text { Kinetic Energy }
\end{array} \\
K \approx \frac{1}{2} m v^{2} \quad
\end{array}
\end{aligned}
$$

$$
K=(\gamma-1) m c^{2} \quad K \approx \frac{1}{2} m \nu^{2}
$$

A ball whose mass is 2 kg travels at 1) $<0,-6,8>\mathrm{J}$ a velocity of $<0,-3,4>\mathrm{m} / \mathrm{s}$.

What is the kinetic energy of the ball?
2) $<0,-3,4>$ J
3) 2 J
4) 10 J
5) 25 J

Lab	L5: Buoyancy, Circles \& Pendulums Fri.,	6.5-.7 (.22) Rest Mass, Work by Changing Forces Columbia Rep 3pm, here
Wed.	$6.8-.9(.18, .19)$ Introducing Potential Energy	RE 6.b (last day to drop)
	..	RE 6.c
Tues.		HW6: Ch 6 Pr's 58,59,
		$99(a-c), 105(a-c)$

motion is neither created nor destroyed, but transferred via interactions.

