Wed. 3.6-. 10 Elect \& Strong Force; Quiz 2
Lab L3: Predicting Motion under Non-Constant F
RE 3.b bring laptop, smartphone, pad,... Fri. 3.11 -. 13 Conservation of P \& Multiple Particles RE3.C
Mon. 4.1-. 5 Atomic nature of matter / springs RE 4.a
EP 3, HW3: Ch 3 Pr's 42, 46, 58, 65, 72 \& CP

Advising Mament:

Workload Expectations and Management Expectations:

Management:

Q3.4.a

The Earth has a mass of 6 e 24 kg . The Sun is much more massive; its mass is 2 e 30 kg . Which of the following statements is correct?
a) The gravitational force on the Sun by the Earth is smaller in magnitude than the gravitational force on the Earth by the Sun.
b) The gravitational force on the Sun by the Earth is exactly the same in magnitude as the gravitational force on the Earth by the Sun.
c) Neither (a) nor (b) is correct.

You hold a tennis ball at rest above your head, then open your hand and release the ball, which begins to fall.

At this moment, which statement about the magnitudes of the gravitational forces between the Earth and ball is correct?
a. The force on the ball by the Earth is larger than the force on the Earth by the ball.
b. The force on the ball by the Earth is smaller than the force on the Earth by the ball.
c. The force on the ball by the Earth is equal to the force on the Earth by the ball.
d. There is not enough information to determine this.

Newton's Universal Law of Gravitation

$$
G=6.67 \times 10^{-11} \frac{N \cdot m^{2}}{(k g)^{2}} \quad \hat{r}_{2 \leftarrow}=\frac{\vec{r}_{2 \leftarrow 1}}{\left|\vec{r}_{2 \leftarrow 1}\right|}
$$

Coulomb's Law

$$
\begin{aligned}
\vec{F}_{2 \leftarrow 1} & =\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{1} q_{2}}{\left|\vec{r}_{2 \leftarrow 1}\right|^{2}} \hat{r}_{2 \leftarrow 1} \\
& \frac{1}{4 \pi \varepsilon_{o}}=9 \times 10^{9} \frac{N \cdot m^{2}}{C^{2}} \quad \hat{r}_{2 \leftarrow 1}=\frac{\vec{r}_{2 \leftarrow 1}}{\left|\vec{r}_{2 \leftarrow 1}\right|}
\end{aligned}
$$

An alpha particle (which contains two protons and two neutrons) has a net charge of +2 e .
The alpha particle is 0.1 m away from a single proton, which has charge +e.

Which statement about the magnitudes of the electric forces between the particles is correct?
a. The force on the proton by the alpha particle is equal to the force on the alpha particle by the proton.
b. The force on the proton by the alpha particle is larger than the force on the alpha particle by the proton .
c. The force on the proton by the alpha particle is smaller than the force on the alpha particle by the proton.
d. There is not enough information to determine this.

Subatomic Particles

Electron:

$$
\text { Mass: } \mathrm{m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}
$$

e- Charge: $q_{e}=-e=-1.6 \times 10^{-19} \mathrm{C}$
Interacts electrically, gravitationally, "weakly"
Diameter: none
Status: fundamental

Proton:

Mass: $m_{p}=1.673 \times 10^{-27} \mathrm{~kg}$
Charge: $q_{p}=+e=+1.6 \times 10^{-19} \mathrm{C}$
Diameter: ${ }^{\sim} 10^{-15} \mathrm{~m}$
Status: composite
u. u) two "up" quarks $+2 / 3$ e charge
(d) one "down" quark -1/3 e charge
interact electrically, gravitationally, "weakly", and "strongly"

Neutron:

Mass: $m_{p}=1.675 \times 10^{-27} \mathrm{~kg}$
Charge: $q_{p}=0$
Diameter: ${ }^{\sim 10^{-15}} \mathrm{~m}$
Status: composite

one "up" quark +2/3 e charge
(d) two "down" quarks -1/3 e charge interact electrically, gravitationally, "weakly", and "strongly"

Fundamental Properties and Interactions
Mass \& Gravitation

$$
\vec{F}_{2 \leftarrow 1}=-G \frac{m_{1} m_{2}}{\left|\vec{r}_{2 \leftarrow 1}\right|^{2}} \hat{r}_{2 \leftarrow 1}
$$

Charge \& Electrical

$$
\vec{F}_{2 \leftarrow 1}=\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{1} q_{2}}{\left|\vec{r}_{2 \leftarrow 1}\right|^{2}} \hat{r}_{2 \leftarrow 1}
$$

"Color" \& Strong

Protons + Neutrons = Nuclei

Nuclear Stability: Coulomb vs. Strong

Nuclear instability

Nuclear instability: Decay Modes (electric and weak interactions)
α decay

β^{-}decay

α Particle $=2 p+2 n$

Atoms: Electrical 'solar systems'

Same form as

$$
\vec{F}_{e \leftarrow p}=\frac{1}{4 \pi \varepsilon_{o}} \frac{(-e)(e)}{\left|\vec{r}_{e \leftarrow p}\right|^{2}} \hat{r}_{e \leftarrow p}
$$

$$
\vec{F}_{\text {Earth }<\text { Sun }}=-G \frac{M_{E} M_{S}}{\left|\vec{r}_{E \leftarrow S}\right|^{2}} \hat{r}_{E \leftarrow S}
$$

$$
\vec{F}_{e \leftarrow p}=\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{e} q_{p}}{\left|\vec{r}_{e \leftarrow p}\right|^{2}} \hat{r}_{e \leftarrow p}
$$

Forces and alternative
Representations of "Interactions"

Mass's dual role ...General Relativity

(note: more realistically - 3D grid puckered)

Predicting the future of Complex Systems

- Too Many Objects
- Example: three-body gravitational system

$$
\begin{aligned}
& \vec{F}_{2 \leftarrow \text { total }}=\vec{F}_{2 \leftarrow 1}+\vec{F}_{2 \leftarrow 3}=-G \frac{M_{1} M_{2}}{\left|\vec{r}_{2 \leftarrow 1}\right|^{2}} \hat{r}_{2 \leftarrow 1}-G \frac{M_{3} M_{2}}{\left|\vec{r}_{2 \leftarrow 3}\right|^{2}} \hat{r}_{2 \leftarrow 3} \\
& \vec{F}_{1 \leftarrow \text { total }}=\vec{F}_{1 \leftarrow 2}+\vec{F}_{1 \leftarrow 3}=-G \frac{M_{1} M_{2}}{\left|\vec{r}_{1 \leftarrow 2}\right|^{2}} \hat{r}_{\leftarrow \leftarrow 2}-G \frac{M_{3} M_{1}}{\left|\vec{r}_{1 \leftarrow 3}\right|^{2}} \hat{r}_{1 \leftarrow 3} \\
& \vec{F}_{3 \leftarrow \text { total }}=\vec{F}_{3 \leftarrow 2}+\vec{F}_{3 \leftarrow 1}=-G \frac{M_{3} M_{2}}{\left|\vec{r}_{3 \leftarrow 2}\right|^{2}} \hat{r}_{3 \leftarrow 2}-G \frac{M_{3} M_{1}}{\left|\vec{r}_{3 \leftarrow 1}\right|^{2}} \hat{r}_{3 \leftarrow 1}
\end{aligned}
$$

- Too Sensitive Dependence: "chaos"
- Example: double pendulum
- Practical Limits to Determinism

Wed. 3.6-. 10 Elect \& Strong Force; Quiz 2
Lab L3: Predicting Motion under Non-Constant F
RE 3.b bring laptop, smartphone, pad,... Fri. 3.11 -. 13 Conservation of P \& Multiple Particles RE3.C
Mon. 4.1-. 5 Atomic nature of matter / springs RE 4.a
EP 3, HW3: Ch 3 Pr's 42, 46, 58, 65, 72 \& CP

