Wed.	3.610 Elect & Strong Force; Quiz 2	RE 3.b bring laptop, smartphone, pad,
Lab	L3: Predicting Motion under Non-Constant F	bring headphones if you want
Fri.	3.11 – .13 Conservation of P & Multiple Particles	RE3.c
Mon.	4.15 Atomic nature of matter / springs	RE 4.a
Tues		EP 3, HW3: Ch 3 Pr's 42, 46, 58, 65, 72 & CP

Advising Moment:

Workload Expectations and Management

Expectations:

Management:

Q3.4.a

The Earth has a mass of 6e24 kg. The Sun is much more massive; its mass is 2e30 kg. Which of the following statements is correct?

- a) The gravitational force on the Sun by the Earth is smaller in magnitude than the gravitational force on the Earth by the Sun.
- b) The gravitational force on the Sun by the Earth is exactly the same in magnitude as the gravitational force on the Earth by the Sun.
- c) Neither (a) nor (b) is correct.

You hold a tennis ball at rest above	a.	The force on the ball by the Earth is larger
your head, then open your hand and		than the force on the Earth by the ball.
release the ball, which begins to fall.	b.	The force on the ball by the Earth is smaller than the force on the Earth by the ball.
At this moment, which statement about the magnitudes of the	С.	The force on the ball by the Earth is equal to the force on the Earth by the ball.
gravitational forces between the Earth and ball is correct?	d.	There is not enough information to determine this.

An alpha particle (which contains two protons and two neutrons) has a net charge of +2e. The alpha particle is 0.1 m away from a single proton, which has charge +e.

Which statement about the magnitudes of the electric forces between the particles is correct?

- a. The force on the proton by the alpha particle is equal to the force on the alpha particle by the proton.
- b. The force on the proton by the alpha particle is larger than the force on the alpha particle by the proton .
- c. The force on the proton by the alpha particle is smaller than the force on the alpha particle by the proton.

d. There is not enough information to determine this.

Subatomic Particles Electron:

Mass: $m_e = 9.11 \times 10^{-31} kg$

e

р

- Interacts electrically, gravitationally, "weakly
- Diameter: none
- Status: fundamental

Proton:

- Mass: m_p= 1.673×10⁻²⁷kg
- Charge: $q_p = +e = +1.6 \times 10^{-19}$ C
- Diameter: ~ 10⁻¹⁵m
- Status: composite
- two "up" quarks +2/3 e charge
 - d one "down" quark -1/3 e charge
 - interact electrically, gravitationally, "weakly", and "strongly"

Neutron:

- n
- Mass: m_p= 1.675×10⁻²⁷
- Charge: $q_p = 0$
- Diameter: ~10⁻¹⁵m
- Status: composite

du one "up" quark +2/3 e charge

two "down" quarks -1/3 e charge

interact electrically, gravitationally, "weakly", and "strongly"

Fundamental Properties and Interactions

Mass & Gravitation

Charge & Electrical

"Color" & Strong

Protons + Neutrons = Nuclei

Nuclear Stability: Coulomb vs. Strong

Nuclear instability

Nuclear *instability*: Decay Modes (electric and weak interactions)

Atoms: Electrical 'solar systems'

$$\vec{F}_{e \leftarrow p} = \frac{1}{4\pi\varepsilon_o} \frac{q_e q_p}{\left|\vec{r}_{e \leftarrow p}\right|^2} \hat{r}_{e \leftarrow p}$$

Forces and *alternative* Representations of "Interactions"

Mass's dual role ... General Relativity

(note: more realistically – 3D grid puckered)

Predicting the future of Complex Systems

- Too Many Objects
 - Example: three-body gravitational system

$$\begin{split} \vec{F}_{2\leftarrow total} &= \vec{F}_{2\leftarrow 1} + \vec{F}_{2\leftarrow 3} = -G\frac{M_1M_2}{\left|\vec{r}_{2\leftarrow 1}\right|^2} \,\hat{r}_{2\leftarrow 1} - G\frac{M_3M_2}{\left|\vec{r}_{2\leftarrow 3}\right|^2} \,\hat{r}_{2\leftarrow 3} \\ \vec{F}_{1\leftarrow total} &= \vec{F}_{1\leftarrow 2} + \vec{F}_{1\leftarrow 3} = -G\frac{M_1M_2}{\left|\vec{r}_{1\leftarrow 2}\right|^2} \,\hat{r}_{1\leftarrow 2} - G\frac{M_3M_1}{\left|\vec{r}_{1\leftarrow 3}\right|^2} \,\hat{r}_{1\leftarrow 3} \\ \vec{F}_{3\leftarrow total} &= \vec{F}_{3\leftarrow 2} + \vec{F}_{3\leftarrow 1} = -G\frac{M_3M_2}{\left|\vec{r}_{3\leftarrow 2}\right|^2} \,\hat{r}_{3\leftarrow 2} - G\frac{M_3M_1}{\left|\vec{r}_{3\leftarrow 1}\right|^2} \,\hat{r}_{3\leftarrow 1} \end{split}$$

- Too Sensitive Dependence: "chaos"
 - Example: double pendulum
- Practical Limits to Determinism

Wed.	3.610 Elect & Strong Force; Quiz 2	RE 3.b bring laptop, smartphone, pad,
Lab	L3: Predicting Motion under Non-Constant F	bring headphones if you want
Fri.	3.11 – .13 Conservation of P & Multiple Particles	RE3.c
Mon.	4.15 Atomic nature of matter / springs	RE 4.a
Tues		EP 3, HW3: Ch 3 Pr's 42, 46, 58, 65, 72 & CP