Fri.	$2.6-.8$ Constant Force, time estimates, Models	RE 2.c
Mon.	$3.1-.5, .14-.15$ Fundamental Forces, Gravitation	RE 3.a
Tues		EP 2, HW2: Ch 2 Pr's 40, 57, 63, 67 \& CP

- Non-constant Force - spring intro. continued
- Constant force - gravitation (near Earth)
- Time estimates for collisions
example with the spring over here, I hang $4.9 \mathrm{~N}(0.5 \mathrm{~kg})$ weight from it, and it stretches by m. So, what's it's stiffness?

Q 2.5 c
A spring is 12 cm (0.12 m) long when relaxed. Its stiffness is $30 \mathrm{~N} / \mathrm{m}$. You push on the spring, compressing it so its length is now 10 cm (0.10 m).

What is the magnitude of the force the spring now exerts on your hand?
a) $\quad 0.6 \mathrm{~N}$
b) $\quad 3 \mathrm{~N}$
c) $\quad 3.6 \mathrm{~N}$
d) $\quad 30 \mathrm{~N}$

Three ways to Explore

Experiment: Observe Motion

Compute: Simulate Motion (with force and momentum visualized)

$$
\begin{aligned}
& \text { while } \mathrm{t}<\mathrm{t}_{\text {max }}: \\
& \vec{F}_{\text {net } \rightarrow \text { object }} \Leftarrow-k_{s} *\left(\vec{r}_{\text {object }} \mid-L_{\text {eq }}\right) \hat{r} \\
& \vec{p}_{\text {object }} \Leftarrow \vec{p}_{\text {object }}+\vec{F}_{\text {net } \rightarrow \text { object }} \Delta t \\
& \vec{r}_{\text {object }} \Leftarrow \vec{r}_{\text {object }}+\frac{\vec{p}_{\text {object }}}{m_{\text {object }}} \Delta t \\
& t \Leftarrow t+\Delta t
\end{aligned}
$$

Analytical: (for a later chapter) build and solve 'equations of motion.'
2.6 Constant Force -near-Earth gravitation

A ball is initially on the ground, and you kick it with initial velocity $<3,7,0>\mathrm{m} / \mathrm{s}$. At this speed air resistance is negligible. Assume the usual coordinate system.

Which component(s) of the ball's momentum will change in the next half second (after the ball's left your foot)?

1) p_{x}
2) p_{y}
3) p_{z}
4) $p_{x} \& p_{y}$
5) $p_{y} \& p_{z}$
6) $p_{z} \& p_{x}$
7) $p_{x}, p_{y} \& p_{7}$

The initial momentum of the ball was $\left\langle 1.5,3.5,0>\mathrm{kg}^{*} \mathrm{~m} / \mathrm{s}\right.$. The final momentum of the ball is $\langle 1.5,1.05,0\rangle \mathrm{kg} * \mathrm{~m} / \mathrm{s}$.

Therefore...
Q2.6.c: Which graph correctly shows p_{y} for the ball during this 0.5 s ?

1			
$\left\|p_{y}\right\|$			
4		6	
$\left\|p_{y}\right\|$			

You throw a ball so that just after it leaves your hand at location

 $\vec{r}_{i}=\left\langle x_{i}, y_{i}, 0\right\rangle$ it has velocity $\vec{v}_{i}=\left\langle v_{x i}, v_{y i}, 0\right\rangle$. Now that it has left your hand, (and we're neglecting air resistance) the net force all the time is $\vec{F}_{n e t} \approx \vec{F}_{E, s}=\langle 0,-m g, 0\rangle$. What are the velocity and position of the ball after time Δt ?

$$
\begin{aligned}
& \vec{p}_{f}=\vec{p}_{i}+\vec{F}_{n e t . a v g} \Delta t \\
& \vec{p}_{f}=\vec{p}_{i}+\vec{F}_{E . g} \Delta t \text { Presumably } \mathrm{v} \ll \mathrm{c} \\
& m \vec{v}_{f}=m \vec{v}_{i}+\vec{F}_{E . g} \Delta t \\
& m \vec{v}_{f}=m \vec{v}_{i}+m \vec{g} \Delta t \\
& \vec{v}_{f}=\vec{v}_{i}+\vec{g} \Delta t \\
& \left\langle v_{x f}, v_{y f}, 0\right\rangle=\left\langle v_{x i}, v_{y i}, 0\right\rangle+\langle 0,-g, 0\rangle \Delta t \begin{cases}\hat{x}: & v_{x f}=v_{x i} \\
\hat{y}: & v_{y f}=v_{y i}-g \Delta t\end{cases}
\end{aligned}
$$

system: Ball (b)

$\vec{F}_{a i r} \approx 0$
\hat{y}_{\uparrow}

$$
\begin{gathered}
\vec{v}_{i}=\left\langle v_{x i}, v_{y i}, 0\right\rangle \\
\vec{y}_{i}=\left\langle x_{i}, y_{i}, 0\right\rangle
\end{gathered}
$$

$$
\vec{v}_{f}=?
$$

\[

\]

Apply Position Update

$$
\vec{r}_{f}=\vec{r}_{i}+\vec{v}_{\text {avg }} \Delta t
$$

$$
\vec{r}_{f}=\vec{r}_{i}+\left(\vec{v}_{i}+\frac{1}{2} \vec{g} \Delta t\right) \Delta t
$$

$$
\vec{r}_{f}=\vec{r}_{i}+\vec{v}_{i} \Delta t+\frac{1}{2} \vec{g}(\Delta t)^{2}
$$

$$
\left\langle x_{f}, y_{f}, 0\right\rangle=\left\langle x_{i}, y_{i}, 0\right\rangle+\left\langle v_{i x}, v_{i y}, 0\right\rangle \Delta t+\frac{1}{2}\langle 0,-g, 0\rangle(\Delta t)^{2}
$$

$$
\hat{x} \quad x_{f}=x_{i}+v_{i x} \Delta t
$$

$$
\hat{y} \quad y_{f}=y_{i}+v_{i y} \Delta t-\frac{1}{2} g(\Delta t)^{2}
$$

system: Ball (b)

Initially the velocity of the ball is
$<3,7,0>\mathrm{m} / \mathrm{s}$. After 0.5 s , the ball's velocity is
$<3,2.1,0>\mathrm{m} / \mathrm{s}$.
What is the best choice for the y-component of the ball's average velocity during this interval?

1) $2.10 \mathrm{~m} / \mathrm{s}$
2) $4.55 \mathrm{~m} / \mathrm{s}$
3) $4.90 \mathrm{~m} / \mathrm{s}$
4) $7.00 \mathrm{~m} / \mathrm{s}$
5) $9.10 \mathrm{~m} / \mathrm{s}$
system: Ball (b)
$\vec{F}_{a i r} \approx 0$
\hat{y}

Apply Position Update

$$
\vec{r}_{f}=\vec{r}_{i}+\vec{v}_{i} \Delta t+\frac{1}{2} \vec{g}(\Delta t)^{2}
$$

$$
\hat{x}: x_{f}=x_{i}+v_{i x} \Delta t \quad \hat{y}: y_{f}=y_{i}+v_{i y} \Delta t-\frac{1}{2} g(\Delta t)^{2}
$$

system: Ball (b)

$\vec{F}_{a i r} \approx 0$
\hat{y}_{\uparrow}

$$
\begin{gathered}
\vec{v}_{i}=\left\langle v_{x i}, v_{y i}, 0\right\rangle \\
\vec{y}_{i}=\left\langle x_{i}, y_{i}, 0\right\rangle
\end{gathered}
$$

$$
\vec{v}_{f}=?
$$

Apply the Momentum Principle	$\vec{v}_{f}=\vec{v}_{i}+\vec{g} \Delta t$
	$v_{x f}=v_{x i} \quad \hat{y}: \quad v_{y f}=v_{y i}-g \Delta t$
Apply Position Update	$\vec{r}_{f}=\vec{r}_{i}+\vec{v}_{i} \Delta t+\frac{1}{2} \vec{g}(\Delta t)^{2}$
$\hat{x}: x_{f}=x_{i}+v_{i x} \Delta t$	$\hat{y}: y_{f}=y_{i}+v_{i y} \Delta t-\frac{1}{2} g(\Delta t)^{2}$

Graphical Representations

system: Ball (b)
$\vec{F}_{a i r} \approx 0$
\hat{y}_{\uparrow}

$$
\vec{v}_{f}=?
$$

\[

\]

Apply Position Update

$$
\vec{r}_{f}=\vec{r}_{i}+\vec{v}_{i} \Delta t+\frac{1}{2} \vec{g}(\Delta t)^{2}
$$

$\vec{v}_{i}=\left\langle v_{x i}, v_{y i}, 0\right\rangle$

$$
\vec{r}=\left\langle x_{i}, y_{i}, 0\right\rangle
$$

$$
\hat{x}: x_{f}=x_{i}+v_{i x} \Delta t \quad \hat{y}: y_{f}=y_{i}+v_{i y} \Delta t-\frac{1}{2} g(\Delta t)^{2}
$$

Example: If you throw a ball horizontally off of a $10-\mathrm{m}$ high cliff at $5 \mathrm{~m} / \mathrm{s}$, how far from the base of the cliff will it hit the ground?

system: Ball (b)

\hat{y}_{\uparrow}

$$
\vec{v}_{f}=?
$$

$\vec{v}_{i}=\left\langle v_{x i}, v_{y i}, 0\right\rangle$

Apply Position Update

$$
\vec{r}_{f}=\vec{r}_{i}+\vec{v}_{i} \Delta t+\frac{1}{2} \vec{g}(\Delta t)^{2}
$$

$$
\hat{x}: x_{f}=x_{i}+v_{i x} \Delta t \quad \hat{y}: y_{f}=y_{i}+v_{i y} \Delta t-\frac{1}{2} g(\Delta t)^{2}
$$

Example: At the start of a football game, the kickoff has an initial speed of $22 \mathrm{~m} / \mathrm{s}$ at 40° above horizontal.
a) How long does the ball stay in the air?
b) How far away does the ball hit the ground?
c) What is the maximum height that the ball reaches?
$\vec{F}_{a i r} \approx 0$
air?
c) What is the maximum height that the ball reaches?

system: Ball (b)
 b)

\hat{y}_{\star}

Apply the Momentum Principle | | $v_{f}=v_{i}+g \Delta t$ |
| ---: | :--- |
| $\hat{x}: \quad v_{x f}=v_{x i}$ | $\hat{y}: \quad v_{y f}=v_{y i}-g \Delta t$ |

Apply Position Update

$$
\vec{r}_{f}=\vec{r}_{i}+\vec{v}_{i} \Delta t+\frac{1}{2} \vec{g}(\Delta t)^{2}
$$

Exercise: You have probably seen a basketball player throw the ball to a teammate at the other end of the court, 30 m away.
a) Estimate a reasonable initial angle for such a throw, and then determine the corresponding
initial speed.
b) For your chosen angle, how long does it take for the ball to go the length of the court?
c) What is the highest point along the trajectory, relative to the thrower's hand?

$$
\vec{F}_{a i r} \approx 0
$$

for the ball to go the length of then determine the corne relative to the thrower's hand?
0

$$
\hat{x}: x_{f}=x_{i}+v_{i x} \Delta t \quad \hat{y}: y_{f}=y_{i}+v_{i y} \Delta t-\frac{1}{2} g(\Delta t)^{2}
$$

|
都 ,
 ?

Example of Estimating collision force

Say a 2200 kg truck, going $25 \mathrm{~m} / \mathrm{s}$, hits a brick wall and comes to a dead stop. In the process, the truck's hood crumples back 0.8 m . Estimate the magnitude of the average force of the collision.
$\vec{F}_{\text {avg }, t-w}=\frac{\Delta \vec{p}}{\Delta t}$
$\left|\vec{F}_{\text {avg,tww }}\right| \approx m_{t} \frac{\left|\overrightarrow{\vec{v}}_{f}^{0}-\vec{v}_{i}\right|}{\Delta t}$
$\left|\vec{F}_{\text {avg. } .<w}\right| \approx m_{t} \frac{\left|\vec{v}_{i}\right|}{\Delta t}$
$\Delta t=\left|\begin{array}{c}\Delta \vec{r} \\ \overrightarrow{\vec{v}}_{\text {avg }}\end{array}\right|$

$$
\left|\vec{v}_{\text {avg }}\right| \approx\left|\frac{\vec{v}_{f}^{f}+\vec{v}_{i}}{2}\right|=\left|\frac{\vec{v}_{i}}{2}\right|
$$

$$
\Delta t=\left|\frac{2 \Delta \vec{r}}{\vec{v}_{i}}\right|
$$

$$
\left|\vec{F}_{\text {avg }, t-w}\right| \approx m_{t} \frac{\left|\vec{v}_{i}\right|^{2}}{2|\Delta \vec{r}|}
$$

A 5-kg lead ball is dropped from rest at a height of 10 m . The

 ball leaves a 5 cm deep dent in the ground.a) How fast is the ball traveling just before hitting the ground?
b) What is the approximate force exerted by the ground on the ball while it is stopping?

Fri.	$2.6-.8$ Constant Force, time estimates, Models	RE 2.c
Mon.	$3.1-.5, .14-.15$ Fundamental Forces, Gravitation	RE 3.a
Tues		EP 2, HW2: Ch 2 Pr's 40, 57, 63, 67 \& CP

