Day	Reading	Due
Today	$1.6-.10$ Velocity \& Momentum	RE 1.b
Mon.	$2.1-.3,(.9, .10)$ Momentum Principle \& Simple Examples	RE 2.a
Tues.		EP1, HW1: Ch 1 Pr. 98

Principle in English:
Motion is neither created nor destroyed but transferred via interactions.

momentum

Principle in Mathematics:

Outline

- Vector math overview
- Units
- Displacement \& Velocity
- Momentum

Component Representation: $\vec{r}=\left\langle r_{x}, r_{y}, r_{z}\right\rangle$

	,	\square	T			\square	\square	T	T
			-				(4)		
							(4)	-	,
									7
									,
									-
		tion:	<3,60	, >unit	nits	(relativ	tive to	to the od	eorigin

Component Representation: $\vec{r}=\left\langle r_{x}, r_{y}, r_{z}\right\rangle$

A's Position: <3,6,0>units
B's Position: < \qquad
\qquad ,0>units

Graphical / Arrow Representation:

A's Position: <3,6,0>units
B's Position: <-7,-2,0>units

Practice with Vectors

Subtraction: $\vec{r}_{B \leftarrow A}=\vec{r}_{B}-\vec{r}_{A}$

Q1.5.b

What is $\langle 10,20,-15\rangle-<5,-8,7\rangle$?
A) 19
B) 38.7
C) $\langle 15,12,8\rangle$
D) $\langle 5,28,-22\rangle$
E) $\langle 5,12,-8>$

Practice with Vectors

Magnitude: $\left|\vec{r}_{B-A}\right|$

Pythagorean's Theorem:

Q1.5.d
What is the magnitude of the vector $<3,5,-2>$?
a) 5.48
b) $\mathbf{6 . 1 6}$
c) 6.00
d) 30.00
e) 38.00

Practice with Vectors
Direction: $\hat{r}_{B \leftarrow A}$

$$
\hat{r}_{B \leftarrow A}=\frac{\vec{r}_{B \leftarrow A}}{\left|\vec{r}_{B \leftarrow A}\right|}
$$

Q1.5.e
What is the unit vector in the direction of the vector $<3,5,-2>$?
a) $\langle 3,5,-2\rangle$
b) $\langle 1,1,-1\rangle$
c) $\langle 0.49,0.81,0.32\rangle$
d) $\langle 0.49,0.81,-0.32\rangle$
e) $\langle 0.3,0.5,-0.2\rangle$

Q1.5.d
What is the magnitude of the vector $<3,5,-2>$?
a) 5.48
b) $\mathbf{6 . 1 6}$
c) 6.00
d) $\quad 30.00$
e) 38.00

Q1.5.e
What is the unit vector in the direction of the vector $<3,5,-2>$?
a) $\langle 3,5,-2\rangle$
b) $\langle 1,1,-1\rangle$
c) $\langle 0.49,0.81,0.32\rangle$
d) $\langle 0.49,0.81,-0.32\rangle$
e) $\langle 0.3,0.5,-0.2\rangle$

Translating between Cartesian and Polar descriptions

Translating between Cartesian and Polar descriptions

Translating between Cartesian and Polar descriptions

Practice with Vectors

Translating between Cartesian and Polar descriptions

1.6 Units

Always use them
Always use SI units
Conversions

- Practice ...

1.7 Velocity

Average

Q1.7.a
A bee flies in a straight line at constant speed. At 15 s after 9 AM, the bee's position is $<2,4,0\rangle \mathrm{m}$. At 15.5 s after 9 AM, the bee's position is $<3,3.5,0>\mathrm{m}$.

What is the average velocity of the bee?
a) $\langle 6,7,0\rangle \mathrm{m} / \mathrm{s}$
b) $<.193, .225,0>\mathrm{m} / \mathrm{s}$
c) $2.236 \mathrm{~m} / \mathrm{s}$
d) $\langle 0.500,-0.250,0\rangle \mathrm{m} / \mathrm{s}$
e) $<2.000,-1.000,0>\mathrm{m} / \mathrm{s}$

1.7 Velocity

- Average
- Position update form

Q1.7.c: At 12.18 s after 1:30 PM, a ball's position is $<\mathbf{2 0 , 8 , - 1 2 >} \mathrm{m}$, and the ball's velocity is $\langle 9,-4,6>\mathrm{m} / \mathrm{s}$.

What is the (vector) position of the ball at 12.21 s after 1:30 PM? Assume that the ball's velocity does not change significantly in this short time interval.
a) 24.75 m
b) $<20.27,7.88,-11.82>m$
c) $<0.27,-0.12,0.18>\mathrm{m}$
d) < 129.62, -40.72, $61.08>\mathrm{m}$
e) < 129.89, -40.84, 61.26>m

1.7 Velocity

Average

- Position update form

Instantaneous

- Calculus

Q 1.7 d
A ball travels through the air. Part of its trajectory is shown in red.

Which arrow best represents the direction of the average velocity of the ball as it travels from location A to location B ?

Q 1.7 e

A ball travels through the air. Part of its trajectory is shown in red.

Which arrow best represents the direction of the instantaneous velocity of the ball as it travels from location A to location B ?

Q1.7.b: At 15 s after 10 AM two bees are observed to be at position $<2,4,0>\mathrm{m}$. Bee \#1 flies in a straight line with constant speed and arrives at position <3, 3.5, $0>\mathrm{m}$ at 15.5 s after 10 AM . Bee \#2 buzzes around, repeatedly changing speed and direction, sometimes going quickly and other times just hovering in the air, but it also arrives at position < 3, 3.5, $0>\mathrm{m}$ at 15.5 s after 10 AM.

Which statement about their average velocities is correct?
a) The magnitude of Bee \#1's average velocity is greater.
b) The magnitude of Bee \#2's average velocity is greater.
c) The two bees have the same velocity at all times.
d) The two bees have the same average velocity although their velocity at a given time may not be the same.

Rephrase in Mathematics

Motion is neither created nor destroyed but transferred via interactions.

$$
\begin{gathered}
? \vec{v}_{1 . \text { before }}+\vec{v}_{2 . \text { before }}=\vec{v}_{1 . \text { after for equal masses }}+\vec{v}_{2 . \text { after }} ? \\
\hline
\end{gathered}
$$

$m \vec{v}$:

$$
? m_{1} \vec{v}_{1 . \text { before }}+m_{2} \vec{v}_{2 . \text { before }}=m_{1} \vec{v}_{1 . a f t e r}+m_{2} \vec{v}_{2 . a f t e r} ?
$$ Only for speeds much less than light

Momentum: $\vec{p}_{1, \text { before }}+\vec{p}_{2 . \text { before }}=\vec{p}_{1 . \text { after }}+\vec{p}_{2 . \text { after }}$

$$
\vec{p} \equiv \frac{m \vec{v}}{\sqrt{1-\left(\frac{|\vec{v}|}{c}\right)^{2}}}:
$$

$$
C=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

Q 1.8 b
Calculate the factor $\gamma=\frac{1}{\sqrt{1-\left(\frac{|v|}{c}\right)^{2}}}$ if the speed is 0.9999c.
a) 0.9998
b) 1.0000
c) 22.4
d) 1.414×10^{-2}
e) 70.7

Q 1.8 a
Three protons travel through space at three different speeds.

Proton A: $290 \mathrm{~m} / \mathrm{s}$
Proton B: $2.9 \times 10^{6} \mathrm{~m} / \mathrm{s}$
Proton C: $2.9 \times 10^{8} \mathrm{~m} / \mathrm{s}$

For which proton(s) is it reasonable to use the approximation when calculating its momentum?

1. A only
2. A and B
3. A and B and C
4. none of the protons

Q1.9.a:
A child rides on a merry-go-round, traveling from location A to location C at a constant speed.

What is the direction of the change in the child's momentum, between locations A and C?

Q1.9.b:
A child rides on a merry-go-round, traveling from location A to location B at a constant speed.

What is the direction of the change in the child's momentum, between locations A and C?

Q1.9.c:
Suppose you are driving a 1000 kg car at $20 \mathrm{~m} / \mathrm{s}$ in the +x direction. After making a 180 degree turn, you drive the car at $20 \mathrm{~m} / \mathrm{s}$ in the -x (opposite) direction. What is the
a) $0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
b) $2.0 \mathrm{e} 4 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
c) $4.0 \mathrm{e} 4 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
d) $6.0 \mathrm{e} 4 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
e) $8.0 \mathrm{e} 4 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$

Q1.9.c:
Suppose you are driving a 1000 kg car at $20 \mathrm{~m} / \mathrm{s}$ in the +x direction. After making a 180 degree turn, you drive the car at $20 \mathrm{~m} / \mathrm{s}$ in the -x (opposite) direction. What is the change of the magnitude of the momentum $\Delta|\vec{p}|$ of the car?
a) $0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
b) $2.0 \mathrm{e} 4 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
c) $4.0 \mathrm{e} 4 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
d) $6.0 \mathrm{e} 4 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
e) $8.0 \mathrm{e} 4 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$

Day	Reading	Due
Today	$1.6-.10$ Velocity \& Momentum	RE 1.b
Mon.	$2.1-.3,(.9, .10)$ Momentum Principle \& Simple Examples	RE 2.a
Tues.		EP1, HW1: Ch 1 Pr. 98

Principle in English:
Motion is neither created nor destroyed but transferred via interactions.
Momentum: $\vec{p} \equiv \frac{m \vec{v}}{\sqrt{1-\left(\frac{|\vec{v}|}{c}\right)^{2}}}$

Principle in Mathematics:

