## Physics 231: General Physics I

 Eric Hill
## Motion is neither created nor destroyed, but

 transferred via interactions.
## Today

- $1^{\text {st_-Day-of-Class logistics }}$
- $1^{\text {st }}$-chapter-of-the -book big picture / stage setting
- vector refresher


## Intro to Course

oThis Semester: Modern Mechanics
oMechanics = Kinematics (motion) \& Dynamics (interaction) oFundamental Principle of Mechanics
o"Modern"
oSimulations
oLevel
oMath
oAlgebra \& basic Trig
oCalculus
oSlow start
oPhysics
oNo Previous required
oDeeper than High School

- Alternative
-Phys 220-221
-The Difference
oTime to decide.
oSpecial Needs
oRoll Call


## Syllabus

- Office Hours
- Course Components
-Reading
-Text
olf you don't have it
-Assignments
oReading Exercises
-WebAssign
-www.webassign.net. User name: first_last, Password: Appleton
-Free Trial
-Demonstration
-First Assignment
-(Weekly) Homework
-Exploring Physics
-First One
-Lab - bring laptop if you have one
-Quizes
-Exams
-Schedule


## Misc.

## oWeb-site - it's all there <br> oSupplies <br> -Pencil <br> -Paper / notebook <br> -Calculator <br> -Working Together <br> oCheating

Today's Reading
1.1

Kinds of Matter
1.2 Detecting Interactions
1.3 Newton's First Law of Motion
1.4 Indicators of Interactions
1.5 Describing the 3D World: Vectors

## Q1.2.a: Moving objects left the traces

 shown at left. The dots were laid down at equal time intervals. Which objects did NOT interact with another object somewhere?A
B
C
A and D
$A$ and $B$
A, B, and D

## Q1.2.b

Which of the following can NOT be true for an object moving in a straight line at a constant speed?

1. Nothing is interacting with the object (it is in interstellar space, far from all other objects).
2. The object is experiencing a net interaction.
3. The object is experiencing multiple interactions, and these interactions add up to zero.
4. The object has no net interaction with the rest of the world.

## Newton's First Law -

 "An object moves in a straight line and at a constant speed except to the extent that it interacts with other objects."
## Indicators of interaction

- Change of motion (velocity)

Other indicators of Interactions:
oChange in identity
oChange in configuration
oChange in temperature
oChange in position?

## Indirect Evidence of an interactions

- Lack of change in spite of known interaction

Change of 'state' indicates interaction

Practice with Vectors

Component Representation: $\vec{r}=\left\langle r_{x}, r_{y}, r_{z}\right\rangle$


A's Position: <3,6,0>units (relative to the origin)

Component Representation: $\vec{r}=\left\langle r_{x}, r_{y}, r_{z}\right\rangle$


A's Position: <3,6,0>units
B's Position: < $\qquad$
$\qquad$ ,0>units

Graphical / Arrow Representation:


A's Position: <3,6,0>units
B's Position: <-7,-2,0>units

## Practice with Vectors

Subtraction: $\vec{r}_{B \leftarrow A}=\vec{r}_{B}-\vec{r}_{A}$


$$
\vec{r}_{B-A}=\vec{r}_{B}-\vec{r}_{A}=\left\langle\left(r_{B, x}-r_{A, x}\right),\left(r_{B, y}-r_{A, y}\right),\left(r_{B, z}-r_{A, z}\right)\right\rangle
$$

## Practice with Vectors

Subtraction: $\vec{r}_{B \leftarrow A}=\vec{r}_{B}-\vec{r}_{A}$


$$
\left.\vec{r}_{B \leftarrow A}=\vec{r}_{B}-\vec{r}_{A}=\left\langle\left(r_{B, x}-r_{A . x}\right),\left(r_{B . y}-r_{A, y}\right),\left(r_{B, z}-r_{A, z}\right)\right\rangle=\langle((-7)-3),((-2)-6),(0-0))\right\rangle \text { units }
$$

## Practice with Vectors

Subtraction: $\vec{r}_{B \leftarrow A}=\vec{r}_{B}-\vec{r}_{A}$

$\vec{r}_{B \leftarrow A}=\vec{r}_{B}-\vec{r}_{A}=\left\langle\left(r_{B, x}-r_{A . x}\right),\left(r_{B . y}-r_{A, y}\right),\left(r_{B, z}-r_{A . z}\right)\right\rangle=\langle((-7)-3),((-2)-6),(0-0)\rangle$ units
$=\langle-10,-8,0\rangle$ units

## Q1.5.b

What is $\langle 10,20,-15\rangle-<5,-8,7\rangle$ ?
a) 19
b) 38.7
c) $\langle 15,12,8\rangle$
d) $\langle 5,28,-22\rangle$
e) $\langle 5,12,-8\rangle$

Magnitude: $\left|\vec{r}_{B \in A}\right|$

|  |  |  |  |  |  |  |  | - |  |  | $\square$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | (1) |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | $\overrightarrow{r a}_{B}$ |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| © |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |

Magnitude: $\left|\vec{r}_{B \leftarrow A}\right|$

Pythagorean's Theorem:


## Practice with Vectors

Magnitude: $\left|\vec{r}_{B \in A}\right|$


$$
\begin{aligned}
& \left|\vec{r}_{B-A}\right|=\sqrt{\left|\vec{r}_{B-A .}\right|^{2}+\left|\vec{r}_{B-A .4}\right|^{2}+\left|\vec{r}_{B-A-A}\right|^{2}} \\
& \mid \vec{r}_{B-A}=\sqrt{|-10|^{2}+\left|-88^{2}+|0|^{2}\right.}{ }^{\text {units }}=\sqrt{100+64} \text { units }=12.8 \text { units }
\end{aligned}
$$

## Q1.5.d <br> What is the magnitude of the vector $<3,5,-2>$ ?

| a. | 5.48 |
| :--- | :--- |
| b. | 6.16 |
| c. | 6.00 |
| d. | 30.00 |
| e. | 38.00 |

Practice with Vectors
direction: $\hat{r}_{B \leftarrow A}$


$$
\hat{r}_{B \leftarrow A}=\frac{\vec{r}_{B \leftarrow A}}{\left|\vec{r}_{B \leftarrow A}\right|}
$$

## Practice with Vectors

direction: $\hat{r}_{B \leftarrow A}$


$$
\hat{r}_{B \leftarrow A}=\frac{\vec{r}_{B \leftarrow A}}{\left|\vec{r}_{B \leftarrow A}\right|}=\frac{\langle-10,-8,0\rangle \text { units }}{12.8 \text { units }}
$$

## Practice with Vectors

 direction: $\hat{r}_{B \leftarrow A}$|  |  |  |  |  |  |  |  |  | $\square$ | T |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | (A) |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | $\hat{r}_{B \leftarrow A}$ |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | $\vec{r}_{B}$ |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| (8) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| - |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |

$$
\hat{r}_{B \leftarrow A}=\frac{\vec{r}_{B \leftarrow A}}{\left|\vec{r}_{B \leftarrow A}\right|}=\frac{\langle-10,-8,0\rangle \text { units }}{12.8 \text { units }}=\langle-0.78,-0.625,0\rangle
$$

Q1.5.e
What is the unit vector in the direction of the vector $<3,5,-2>$ ?

$$
\begin{array}{ll}
\text { a. } & <3,5,-2\rangle \\
\text { b. } & <1,1,-1\rangle \\
\text { c. } & <0.49,0.81,0.32> \\
\text { d. } & <0.49,0.81,-0.32> \\
\text { e. } & <0.3,0.5,-0.2>
\end{array}
$$

## Physics 231: General Physics I

 Eric Hill| Tues. | 1.1-.5 Matter, Interactions, \& Vectors | REO (getting familiar with WebAssign) |
| :--- | :--- | :--- |
| Wed. | L1: VPython Intro. 1-D Motion |  |
| Lab | $1.6-.10$ Velocity \& Momentum | Rring laptop \& headphones if you have <br> Fri. |
| RE 1.b |  |  |
| Mon. | $2.1-.3,(.9, .10)$ Momentum Principle \& Examples | RE 2.a |
| Tues. | EP1, HW1: Ch 1 Pr. 98 |  |

## Motion is neither created nor destroyed, but transferred via interactions.

