| Wed. 5.1-. 5 Rate of Change \& Components Quiz 4 | RE 5.a bring laptop, smartphone, pad,... |
| :--- | :--- | :--- |

Lab Review for Exam 1(Ch 1-4)

Practice Exam 1 (due beginning of lab)
Fri. Exam 1 (Ch 1-4) - Accommodations:

| Mon. $5.5-.7$ Curving Motion | RE 5.b |
| :--- | :--- | :--- |
| Tues. | EP 5, HW5: Ch5 Pr's 16, 19, 45, 48, 64(c\&d) | 3pm - Visit from Columbia Rep

Ch. 5 - Rate of change (if any) of momentum

Today: Special Cases
Equilibium
$\sum_{\text {all }} \vec{F}_{\rightarrow \text { system }}=\frac{d \vec{p}}{d t}=0$
Uniform Circular Motion

The process for force problems

Here is an incomplete force diagram for the system of the red block.

To complete it we need to draw the force due to String 1. Which arrow best indicates the direction of this force?

Equilibrium

$$
\begin{aligned}
& \sum_{\text {all }} \vec{F}_{\text {system } \leftarrow}=\frac{d \vec{p}}{d t}=0 \\
& \vec{F}_{\text {sys } \leftarrow 1}+\vec{F}_{\text {sys } \leftarrow 2}+\vec{F}_{\text {sys }}=0 \\
& \hat{x}: F_{s y s \leftarrow 1 . x}+F s y_{s \leftarrow 2 . \mathrm{x}}+F_{s y s \leftarrow 3 . \mathrm{x}}=0 \\
& \hat{y}: F_{s y s \leftarrow 1 . y}+F_{\text {sys } \leftarrow 2 . y}+F_{\text {sys } \longleftarrow 3 . y}=0 \\
& \hat{z}: F_{\text {sys } \leftarrow 1 . z}+F_{\text {sys } \leftarrow 2.2}+F_{\text {sys } \leftarrow 3.2}=0
\end{aligned}
$$

Q: Can an object ever be in equilibrium if the object is acted on by only (a) a single nonzero force, (b) two forces that point in mutually perpendicular directions, and (c) two forces that point in directions that are not perpendicular?

1 (a)
2 (b)
3 (c)
4 (a) \& (b)
5 (a) \& (c)
6 (b) \& (c)
7 (a), (b), \& (c)

Equilibrium

1-D Example. A 4 kg sheep sign hangs outside a woolen factory; if $2 / 3$ of the weight is born by the right chain, what is the tension in the left chain?

$$
\begin{aligned}
& \vec{F}_{\text {sys } \leftarrow}+\vec{F}_{\text {sys }} \mathrm{R}^{+}+\vec{F}_{\text {sys }}{ }^{\text {E }}=0 \\
& \hat{\hat{x}}: F_{\text {sys } \leftarrow L . x}+F_{S y_{s} \leftarrow R . x}+F_{s y s \leftarrow E \cdot x}=0
\end{aligned}
$$

$$
\begin{aligned}
& F_{\text {sys }} L_{., y}+{ }^{2} / 3 m g-m g=0 \\
& F_{\text {sys } \leftarrow L . y-1 / 3} m g=0 \\
& F_{\text {sys } _L . y}=1 / 3 m g=1 / 3(4 \mathrm{~kg})\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)=13.1 \mathrm{~kg} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=13.1 \mathrm{~N}
\end{aligned}
$$

Young's Modulus Tie-in: If material, radius, and initial length of wires were given, could find how much the stretch holding the sheep.

Equilibrium

Pause and Consider: A box hangs from a rope as illustrated.
Can the rope be pulled tight enough to be completely horizontal?

Equilibrium

2-D Relations. A box hangs from a rope as illustrated.

$$
\begin{aligned}
& \sum_{\text {all }} \vec{F}_{\text {system } \leftarrow}=\frac{d \vec{p}}{d t}=0
\end{aligned}
$$

$$
\begin{aligned}
& \hat{x}: F_{s y s}^{\leftarrow L . x} 1+F s y_{s _R . x}+F_{\text {sys }}{ }_{\text {E.x }}=0
\end{aligned}
$$

The object hangs in equilibrium. $\left|F_{1}\right|$ and $\left|F_{2}\right|$ are magnitudes
a. $0=\left|F_{1}\right|-m g$
b. $0=\left|F_{1}\right|+\left|F_{2}\right|-m g$ of forces.
c. $0=-\left|F_{1}\right|^{*} \cos (\theta)+\left|F_{2}\right|$

Which equation correctly states that $\mathrm{dp}_{\mathrm{V}} / \mathrm{dt}=$ Fnet $_{V}$?
d. $0=\left|F_{1}\right| * \cos (\theta)-m g$

Equilibrium

2-D Example. say the box is 10 kg and the angles of the two ropes (from the horizontal) are $\theta_{L}=20^{\circ}$ and $\theta_{R}=25^{\circ}$. What are the magnitudes of the tensions in each rope?

$\hat{y}: F_{s y s \leftarrow L . y}+F_{s y s \leftarrow R . y}=m g$
$F_{s y s}{ }_{L s} \operatorname{in}\left(\theta_{L}\right)+F_{\text {sys } \leftarrow R} \sin \left(\theta_{\mathrm{R}}\right)=m g$
$F_{\text {sys } \leftarrow R} \frac{\cos \left(\theta_{R}\right)}{\cos \left(\theta_{L}\right)} \sin \left(\theta_{L}\right)+F_{\text {sys } \leftarrow R} \sin \left(\theta_{\mathrm{R}}\right)=m g$
$F_{\text {sys } \leftarrow R c o} s\left(\theta_{R}\right) \tan \left(\theta_{L}\right)+F_{\text {sys }}{ }_{R} \sin \left(\theta_{\mathrm{R}}\right)=m g$
$F_{\text {sys }{ }_{\leftarrow}}\left(\cos \left(\theta_{R}\right) \tan \left(\theta_{L}\right)+\sin \left(\theta_{\mathrm{R}}\right)\right)=m g$
$F_{\text {sys } \leftarrow R}=\frac{m g}{\cos \left(\theta_{R}\right) \tan \left(\theta_{L}\right)+\sin \left(\theta_{\mathrm{R}}\right)}$
$\hat{x}: F_{\text {sys } \leftarrow L_{. x}}+F_{\text {sys } \leftarrow R . x}=0$
$F_{\text {sys } \leftarrow L c} \operatorname{os}\left(\theta_{L}\right)-F_{\text {sys } \leftarrow R} \cos \left(\theta_{R}\right)=0$
$F_{\text {sys }}{ }^{\circ} L=F_{\text {sys }} \leftarrow R \frac{\cos \left(\theta_{R}\right)}{\cos \left(\theta_{L}\right)}$
$F_{\text {sys } \leftarrow L}=130 N \frac{\cos \left(25^{\circ}\right)}{\cos \left(20^{\circ}\right)}$
$F_{\text {sys } \leftarrow L}=125 N$
$F_{\text {sys } \leftarrow R}=\frac{(10 \mathrm{~kg})\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)}{\cos \left(25^{\circ}\right) \tan \left(20^{\circ}\right)+\sin \left(25^{\circ}\right)}$
$F_{C y \mathcal{C}} \quad{ }_{R}=130 \mathrm{~N}$

Hanging Bar Example

What's the force at the hinge in terms of the measurable angles, tension, and weights?

Elevator Example

What's the normal force read by scale you're standing on in an elevator that's rising at a constant rate?

Non-Equilibrium

What's the normal force read by scale you're standing on in an elevator that's accelerating up to speed?

Changing Momentum: Magnitude and Direction

$$
\begin{aligned}
& \vec{F}_{n e t \rightarrow o b j}=\frac{d \vec{p}}{d t}=\frac{d(|\vec{p}| \hat{p})}{d t}=\frac{d|\vec{p}|}{d t} \hat{p}+\underbrace{|\vec{p}| \frac{d \hat{p}}{d t}} \\
& \text { Speeding/slowing } \begin{array}{c}
\text { changing direction }
\end{array} \\
& \text { Should point... Parallel to } \begin{array}{l}
\text { Perpendicular to } \\
\text { momentum vector } \\
\text { momentum vector }
\end{array}
\end{aligned}
$$

Special Case: Uniform Circular Motion (only direction changing)
$\frac{d \vec{p}}{d t}=\frac{d(|\vec{p}| \hat{p})}{d t}=\frac{d|\vec{p}|}{d t} \hat{p}+|\vec{p}| \frac{d \hat{p}}{d t}$ similarly $\quad \vec{v}=\frac{d \vec{r}}{d t}=\frac{d|\vec{r}|}{d t} \hat{r}+|\vec{r}| \frac{d \hat{r}}{d t}$ comparing

$$
\begin{array}{ll}
v=\left|\frac{d \vec{r}}{d t}\right|=\left|\frac{r d \theta}{d t}\right| & \left|\frac{d \hat{r}}{d t}\right|=\left|\frac{d \theta}{d t}\right|=\frac{1}{|\vec{r}|} v \\
\left|\frac{d \vec{r}}{d t}\right|=|\vec{r}|\left|\frac{d \theta}{d t}\right| & \begin{array}{l}
\text { Rate of change of } \\
\text { position vector's } \\
\text { direction }
\end{array}
\end{array}
$$

Changing Momentum: Magnitude and Direction

$$
\begin{gathered}
\vec{F}_{n e t \rightarrow o b j}=\frac{d \vec{p}}{d t}=\frac{d(|\vec{p}| \hat{p})}{d t}=\frac{d|\vec{p}|}{d t} \hat{p}+\underbrace{|\vec{p}| \frac{d \hat{p}}{d t}}_{\begin{array}{c}
\text { Speeding/slowing }
\end{array}} \\
\text { Should point... Parallel to } \\
\text { momentum vector direction }
\end{gathered} \begin{aligned}
& \text { Perpendicular to } \\
& \text { momentum vector }
\end{aligned}
$$

Special Case: Uniform Circular Motion

$$
\left|\frac{d \hat{r}}{d t}\right|=\left|\frac{d \theta}{d t}\right|=\frac{1}{|\vec{r}|} v
$$

Rate of change of position vector's direction

See Vpython example

Rate of change of momentum vector's direction

$$
\left|\frac{d \hat{r}}{d t}\right|=\left|\frac{d \hat{p}}{d t}\right|=\frac{1}{|\vec{r}|} v
$$

direction?

$$
\text { Opposite of } r . \quad-\hat{r}
$$

$$
\frac{d \vec{p}}{d t}=-|\vec{p}| \frac{v}{|\vec{r}|} \hat{r}
$$

Circular

$$
-G \frac{M_{E} M_{S}}{\left|r_{S_{-}}\right|} \hat{r}_{S \in E}=|\vec{p}| \frac{|v|}{\left|r_{S_{E}}\right|} \hat{r}_{S \in E} \quad \text { Motion }
$$

$$
G \frac{M_{\Gamma} M_{S}}{\mid r}=|\vec{p}||v|
$$

$$
\mathrm{G} \frac{M_{k} M}{\left|r_{s_{E}}\right|}=M_{s}|v||v|
$$

Example: Geosynchronous Orbit $G \frac{M_{s}}{\left|r_{s, ~}\right|}=v^{2}$

There's only one orbital radius for satellites that 'stay put'in the sky-" orbit with the same period as the Earth spins: $T=1$ day. What's the orbital radius?

$$
\begin{aligned}
& V=\frac{\text { distance }}{\text { time }}=\frac{\text { Circumferance }}{\text { Period }}=\frac{2 \pi r_{S \leftarrow E}}{T}, G \frac{M_{E}}{\left|r_{S_{E}}\right|}=\left(\frac{2 \pi r_{S \leftarrow E}}{T}\right)^{2} \\
& r_{S \leftarrow E}=\left(G M_{E}\left(\frac{T}{2 \pi}\right)^{2}\right)^{\frac{1}{3}}=\left(\left(6.7 \times 10^{-11} \frac{N m^{2}}{k g^{2}}\right)\left(6 \times 10^{24} \mathrm{~kg}\right)\left(\frac{86,400 \mathrm{~s}}{2 \pi}\right)^{2}\right)^{\frac{1}{3}}=4.2 \times 10^{7} m
\end{aligned}
$$

\because The Midon travels in a rearly cinciular orbit. found the Earth, at nearlv constant speed:

Kepler's 3 ${ }^{\text {rd }}$ Law of Planetary Motion

