Mon.
4.8, . 13 Friction and Buoyancy \& Suction

RE 4.d
EP 4, HW4: Ch 4 Pr's 46, 50, 81, 88 \& CP
5.1-. 5 Rate of Change \& Components Quiz 4 RE 5.a bring laptop, smartphone, pad,... L4b: Buoyancy, Review for Exam 1(Ch 1-4)

Case Study in Three Modes of Exploration with Varying Force: Mass on Spring

Theory / Analysis

System: Ball

Concisely tells us...

$$
x(t)=X \cos (\omega t)+x_{o}
$$

- About the equilibrium
- With a period that...
- Shortens with greater stiffness
- Lengthens with larger masses
$\omega \equiv \frac{2 \pi}{T}=\sqrt{\frac{k}{m}} \Rightarrow T=2 \pi \sqrt{\frac{m}{k}}$
- Doesn't care about amplitude

$$
x(t)=X \cos (\omega t)+x_{o}
$$

where: $\omega \equiv \frac{2 \pi}{T}=\sqrt{\frac{k}{m}}$

$$
\omega \equiv \frac{2 \pi}{T}=\sqrt{\frac{k}{m}} \Rightarrow T=2 \pi \sqrt{\frac{m}{k}}
$$

Period dependence on Stiffness:

Suppose the period of a spring-mass oscillator is 1 s . What will be the period if we double the spring stiffness? (We could use a stiffer spring, or we could attach the mass to two springs.)
a. $T=0.5 \mathrm{~s}$
b. $T=0.7 \mathrm{~s}$
c. $\quad \mathrm{T}=1.0 \mathrm{~s}$
d. $T=1.4 \mathrm{~s}$
e. $\mathrm{T}=2.0 \mathrm{~s}$

$$
\omega \equiv \frac{2 \pi}{T}=\sqrt{\frac{k}{m}} \Rightarrow T=2 \pi \sqrt{\frac{m}{k}}
$$

Period Dependence on Amplitude:

Suppose the period of a spring-mass oscillator

1) $T=0.5 \mathrm{~s}$ is 1 s with an amplitude of 5 cm . What will be
2) $T=0.7 \mathrm{~s}$ the period if we increase the amplitude to 10
3) $T=1.0 \mathrm{~s}$ cm , so that the total distance traveled in one
4) $\mathrm{T}=1.4 \mathrm{~s}$ period is twice as large?
5) $\mathrm{T}=2.0 \mathrm{~s}$

Case Study in Three Modes of Exploration with

Varying Force: Mass on Spring

Theory / Analysis

How does gravitational interaction change behavior?

Note: I've defined down as +y direction So Earth's pull has + sign
$\vec{F}_{n e t}=\vec{F}_{s}+\vec{F}_{E}=\left\langle 0, F_{s}+F_{E}, 0\right\rangle$

$$
\begin{gathered}
F_{\text {net. } y}(t)=-k *\left[y(t)-y_{o}\right]+m g \\
F_{\text {net. } y}(t)=-k *\left[y(t)-y_{o}\right]+\frac{k}{k} m g \\
F_{\text {net. } y}(t)=-k *\left[y(t)-y_{o}\right]+k\left[\frac{m g}{k}\right] \\
F_{\text {net. } y}(t)=-k^{*}\left[y(t)-y_{o}-\frac{m g}{k}\right] \\
F_{\text {net. } y}(t)=-k *\left[y(t)-\left\{y_{o}+\frac{m g}{k}\right\}\right] \\
F_{\text {net. } y}(t)=-k *\left[y(t)-y_{o}^{\prime}\right] \\
\text { where } y_{o}^{\prime} \equiv y_{o}+\frac{m g}{k}
\end{gathered}
$$

Varying Force: Mass on Spring

Theory / Analysis

How does gravitational interaction change behavior?

Note: I've defined down as +y direction
So Earth's pull has + sign

$$
F_{n e t ., y}(t)=-k *\left[y(t)-y_{o}\right]+m g
$$

$$
F_{\text {net. } y}(t)=-k *\left[y(t)-y_{o}^{\prime}\right] \text { where } y_{o}^{\prime} \equiv y_{o}+\frac{m g}{k}
$$

- Exact same form as for horizontal mass-spring, but
$m \frac{d^{d^{\text {shifted equilibrium }}}}{d t_{H W}^{2}} y(t)=-k *\left[y(t)-y_{o}^{\prime}\right]$
'read off' what plays role of " k ", and find corresponding T. Solution:

$$
y(t)=Y \cos (\omega t)+y_{o}^{\prime}
$$

$\vec{F}_{n e t}=\vec{F}_{s}+\vec{F}_{E}=\left\langle 0, F_{s}+F_{E}, 0\right\rangle$

$$
\omega \equiv \frac{2 \pi}{T}=\sqrt{\frac{k}{m}} \Rightarrow T=2 \pi \sqrt{\frac{m}{k}}
$$

Period dependence on \mathbf{g} :

Suppose the period of a spring-mass 1) $\mathrm{T}=0.5 \mathrm{~s}$ oscillator is 1 s with an amplitude of 5 cm . What will be the period if we take the oscillator to a massive planet where g = 19.6 N/kg?
2) $T=0.7 \mathrm{~s}$
3) $\mathrm{T}=1.0 \mathrm{~s}$
4) $T=1.4 \mathrm{~s}$
5) $\mathrm{T}=2.0 \mathrm{~s}$

$$
\begin{aligned}
& F_{n, \text { net }}=k_{s}\left(x_{n-1}+x_{n+1}-2 x_{n}\right) \\
& \frac{d p_{n}}{d t}=k_{s}\left(x_{n-1}+x_{n+1}-2 x_{n}\right) \\
& \frac{d\left(m v_{n}\right)}{d t}=k_{s}\left(x_{n-1}+x_{n+1}-2 x_{n}\right) \\
& \frac{d\left(\frac{d x_{n}}{d t}\right)}{d t}=\frac{k_{s}}{m}\left(x_{n-1}+x_{n+1}-2 x_{n}\right)
\end{aligned}
$$

$$
\frac{\mathrm{d}^{2} x_{n}}{\mathrm{~d} t^{2}}=\frac{k_{s}}{m}\left(x_{n-1}+x_{n+1}-2 x_{n}\right)
$$

$$
\frac{\mathrm{d}^{2} x_{n}}{\mathrm{~d} t^{2}}=\frac{k_{s}}{m} d\left(\frac{\left(x_{n+1}-x_{n}\right)}{d}-\frac{\left(x_{n}-x_{n-1}\right)}{d}\right)
$$

$$
\frac{\mathrm{d}^{2} \varepsilon_{n}}{\mathrm{~d} t^{2}} \approx-\frac{k_{s}}{m} d^{2} \frac{\left(\frac{\mathrm{~d} x_{n+1}}{\mathrm{~d} x}-\frac{\mathrm{d} x_{n}}{\mathrm{~d} x}\right)}{d}
$$

$$
\frac{\mathrm{d}^{2} x_{n}}{\mathrm{~d} t^{2}} \approx-\frac{k_{s}}{m} d^{2} \frac{\mathrm{~d}^{2} x_{n+1}}{\mathrm{~d} x^{2}}
$$

Speed of Sound in a Solid: the result

$$
v=\sqrt{\frac{k_{s}}{m}} d
$$

$$
\begin{aligned}
& \underset{\text { n-1MAH } n \text { MAGAS }+1 \rightarrow x}{d} \\
& \begin{array}{lll}
x_{n-1} & x_{n} & x_{n+1}
\end{array}
\end{aligned}
$$

Stiffer, for a given atomic displacement, greater force pulling it so greater velocity achieved.

More distance between atoms means further the distortion can propagate just through the light weight spring /bond without encountering the resistance of massive atoms.

More massive, more inertial resistance to applied force, less velocity achieved.

Compression (Normal) Force

$$
\begin{aligned}
\stackrel{\vec{F}}{B r}^{\vec{F}_{B r} \leftarrow \text { Table }}+\vec{F}_{B r} & =\frac{d \vec{p}_{B r}}{d t} \\
\vec{F}_{B r}{ }_{\text {Earth }} & =0 \\
\text { Table } & =-\vec{F}_{B r \leftarrow \text { Earth }}
\end{aligned}
$$

Table
Brick $\hat{\vec{F}}_{\overrightarrow{B r}_{\text {Br Table }}}$

$$
\vec{F}_{B r}{ }_{\leftarrow E a r t h}=m B r \vec{g}
$$

Friction Force

Experiment

You push a 100 kg mass on the floor with a horizontal force of 400 N . It doesn't move.

The coefficient of static friction is 0.6 .

What is the magnitude of the frictional force on the block by the floor?
a. 980 N
b. 588 N
c. 400 N
d. Can't tell

```
sliding (kinetic) stationary (static)
ffricion}\approx\mp@subsup{\mu}{k}{}\mp@subsup{F}{\mathrm{ normal }}{}\mp@subsup{f}{\mathrm{ friction }}{}\leq\mp@subsup{\mu}{s}{}\mp@subsup{F}{\mathrm{ normal}}{
```

You push a 100 kg mass on the floor with a horizontal force of 400 N , and it's moving in the direction you are pushing. The coefficient of static friction is 0.3.

What happens to the speed of the block
while you push it?
a. The speed increases
b. The speed decreases
c. The speed does not change
d. Can't tell

| You push a 100 kg mass on the floor with | How much force are you exerting on the |
| :--- | :--- | a horizontal force, and it's moving in the direction you are pushing at a constant speed. The coefficient of kinetic friction is 0.3.

block?
a. 980 N
b. 294 N
c. 490 N
d. Can't tell

Friction Force Example

a) What's the acceleration of the whole train in terms of the masses, coefficient of friction, and the force exerted by the engine?

$$
\vec{F}_{\text {engine }}+\vec{f}_{1}+\vec{f}_{2}+\vec{f}_{3} \approx m_{\text {train }} \vec{a}
$$

$$
\text { Similarly, } f_{2}=\mu_{k} m_{2} g \text { and } f_{3}=\mu_{k} m_{3} g
$$

$$
F_{\text {engine }}-\left(f_{1}+f_{2}+f_{3}\right) \approx\left(m_{1}+m_{2}+m_{3}\right) a
$$

$$
\frac{F_{\text {enaine }}-\left(f_{1}+f_{2}+f_{3}\right)}{\left(m_{1}+m_{2}+m_{3}\right)} \approx a \approx \frac{F_{\text {engine }}-\left(\mu_{k} m_{1} g+\mu_{k} m_{2} g+\mu_{k} m_{3} g\right)}{\left(m_{1}+m_{2}+m_{3}\right)}=\frac{F_{\text {enaine }}}{\left(m_{1}+m_{2}+m_{3}\right)}-\mu_{k} g
$$

$$
\begin{aligned}
& \text { System = train cars (excluding the engine) } \\
& \mu_{\mathrm{k}}=\text { kinetic coefficient of friction } \\
& \vec{F}_{\text {train }} \text { net } \approx m_{\text {train }} \vec{a} \\
& f_{1}=\mu_{k} F_{1 N} \quad \text { No vertical acceleration } \\
& \vec{F}_{1 N}+\mathrm{m}_{1} \vec{g}=0 \\
& F_{1 N}=\mathrm{m}_{1} g \\
& f_{1}=\mu_{k} m_{1} g
\end{aligned}
$$

Friction Force Example

a) What's the acceleration of the whole train in terms of the masses, coefficient of friction, and the force exerted by the engine?

$$
a \approx \frac{F_{\text {enaine }}}{\left(m_{1}+m_{2}+m_{3}\right)}-\mu_{k} g
$$

$$
f_{2}=\mu_{k} m_{2} g \text { and } f_{3}=\mu_{k} m_{3} g
$$

b) What's the force the first car exerts on the second?

System = last two train cars

$$
\vec{F}_{1}+\vec{f}_{2}+\vec{f}_{3} \approx m_{\text {system }} \vec{a} \quad F_{1} \approx \frac{\left(m_{2}+m_{3}\right) F_{\text {enaine }}}{\left(m_{1}+m_{2}+m_{3}\right)}-\mu_{k} g\left(m_{2}+m_{3}\right)+\mu_{k} g\left(m_{2}+m_{3}\right)
$$

$$
F_{1}-\left(f_{2}+f_{3}\right) \approx\left(m_{2}+m_{3}\right) a
$$

$$
F_{1} \approx\left(m_{2}+m_{3}\right) a+\left(f_{2}+f_{3}\right)
$$

Buoyancy and Archimedes' Principle
System: brass ball

$$
\left.\begin{array}{rl}
\frac{d p_{\text {ball. } y}}{d t} & =F_{\text {net. } y} \\
0 & =F_{\text {string }}-m_{\text {ball }} g+(\underbrace{F_{\text {top } \leftarrow \text { fluid }}}_{\text {bottom } \leftarrow \text { fluid }})
\end{array}\right)
$$

System: displaced-volume of fluid 'ball'

$$
\begin{aligned}
& \frac{d p_{\text {fluid.y }}}{d t}=F_{\text {net. } . y} \\
& \quad 0=-m_{\text {fluid.displaced }} g+\left(F_{\text {bottom } \leftarrow \text { fluid }}-F_{\text {top } \leftarrow \text { fluid }}\right) \\
& \left.0=-m_{\text {fluid.displaced }} g+F_{\text {Buoy }}\right) \\
& F_{\text {Buoy }}=m_{\text {fluid.displaced }} g \\
& \text { Archimedes' Principle: } \\
& \text { Buoyant force = weight of the fluid displaced }
\end{aligned}
$$

Buoyancy and Archimedes' Principle In terms of volumes and densities

density $\rho \equiv \frac{m}{V}$ mass

Special case - floating

$$
\vec{F}_{\text {block EAarth }}=m_{\text {block }} \vec{g} \quad 0=-V_{\text {ball }} \rho_{\text {ball }} g+V_{\text {displaced }} \rho_{\text {fluid }} g
$$

Say it's only $2 / 3$ submerged and $1 / 3$ above water. So, if the density of water is $1 \mathrm{~g} / \mathrm{cm}^{3}$, then what is the density of the wood?

Ex. Hot Air balloon

$\uparrow \vec{F}_{\text {buoy }}=m_{\text {air disp. }} \vec{g}$

Total mass: basket, air in balloon, payload, etc.

Mon
Wed. 5.1-. 5 Rate of Change \& Components Quiz 4 Lab Fri.
4.8, . 13 Friction and Buoyancy \& Suction

RE 4.d
EP 4, HW4: Ch 4 Pr's 46, 50, 81, 88 \& CP RE 5.a bring laptop, smartphone, pad,... Practice Exam 1 (due beginning of lab)

