Wed.	4.6-.7, .9-.10 Stress, Strain, Young's Modulus, Compression, Sound	RE 4.b
InStove @ noon Science Poster Session: Hedco7pm~9pm		
Lab	L4: Young's Modulus \& Speed of Sound (Read 4.11-.12)	
Fri	$4.11-.12 ; .14-.15$ Sound in Solids, Analytical Solutions Quiz 3	RE 4.c
Mon. $4.8, .13$ Friction and Buoyancy \& Suction	RE 4.d	
Tues.		EP 4, HW4: Ch 4 Pr's
		$46,50,81,88 \& \mathrm{CP}$
Fri.	Exam 1 (Ch 1-4)	

Ball-Spring Model

Molecule

Spring in Series, Parallel, Both

Spring in Series \& Parallel Rephrased Stress, Strain, and Young's Modulus

$F=k_{\text {total }} \Delta L$

Microscopic
$F=\left(k_{\text {alomic }}\left(\frac{A}{d L}\right)\right) \Delta L$

Stress $\left(10^{8} \mathrm{~N} / \mathrm{m}^{2}\right)$

Two wires with equal lengths are made of pure copper. The diameter of wire A is twice the diameter of wire B.

When 6 kg masses are hung on the wires, wire B stretches more than wire A.

$$
\mathrm{Y}=(\mathrm{F} / \mathrm{A}) /(\mathrm{DL} / \mathrm{L})=\mathrm{k} / \mathrm{d}
$$

You make careful measurements and compute Young's modulus for both wires. What do you find?

1) $Y_{A}>Y_{B}$
2) $Y_{A}=Y_{B}$
3) $Y_{A}<Y_{B}$

Example: You hang a heavy ball with a mass of 14 kg from a silver rod 2.6 m long by 1.5 mm by 3.1 mm . You measure a stretch of the rod, and find that the rod stretched 0.002898 m . Using these experimental data, what value of Young's modulus do you get?

The density of silver is $10.5 \mathrm{~g} / \mathrm{cm}^{3}$ and you can look up its atomic mass. What's the inter-atomic spring stiffness?

n-1MUN n MUNO $+1 \rightarrow x$

stretch $_{\text {left }}$ stretch $_{\text {right }}$

$$
\left(\left(x_{n}-x_{n-1}\right)-d\right) \quad\left(\left(x_{n+1}-x_{n}\right)-d\right)
$$

$$
\begin{gathered}
\left.\left.F_{n, \text { Left }}=-k_{s}\left(\left(x_{n}-x_{n-1}\right)-d\right)\right) \quad F_{n, \text { Right }}=k_{s}\left(\left(x_{n+1}-x_{n}\right)-d\right)\right) \\
\left.\left.F_{n, \text { net }}=F_{n, \text { Left }}+F_{n, \text { Right }}=-k_{s}\left(\left(x_{n}-x_{n-1}\right)-d\right)\right)+k_{s}\left(\left(x_{n+1}-x_{n}\right)-d\right)\right) \\
F_{n, \text { net }}=k_{s}\left(x_{n-1}+x_{n+1}-2 x_{n}\right)
\end{gathered}
$$

Speed of Sound in a Solid

rryyy nryry niry NYYN-1 MMM I NWVVWN + 1 MMYN MNYN MUARA

$$
F_{n, n e t}=k_{s}\left(x_{n-1}+x_{n+1}-2 x_{n}-x_{n-1}\right)
$$

Informed Guess at v's dependence

Stiffer, for a given atomic displacement, greater force pulling it so greater velocity achieved.

More distance between atoms means further the distortion can propagate just through the light weight spring /bond without encountering the resistance of massive atoms.

More massive, more inertial resistance to applied force, less velocity achieved.

Example: The spring constant of aluminum is about $16 \mathrm{~N} / \mathrm{m}$. The typical separation of Al atoms was $2.6 \times 10^{-10} \mathrm{~m}$. Recall also that the atomic mass of aluminum is $27 \mathrm{~g} / \mathrm{mole}$. So what is the speed of sound in Aluminum?

Microscopic to Macroscopic Springs
Molecule

$$
\vec{F}=-k_{\text {spring }}(\dot{\bar{L}} ;) \Delta \vec{I}
$$

Case Study in Three Modes of Exploration with Varying Force: Mass on Spring
Experimentation / Observation

Case Study in Three Modes of Exploration with Varying Force: Mass on Spring

Experimentation / Observation
Observations to Understand

- force, velocity, and position vary sinusoidally
- force and position vary in synch
- velocity varies out-of-synch
- Period's dependence
- Mass
- greater mass, slower
- Stiffness - greater stiffness, faster
- Amplitude - no effect!

Observations to Understand

- Changing gravity only changes center of oscillation

Computation / Simulation

```
\mp@subsup{\vec{F}}{s}{}=-\mp@subsup{k}{s}{}(|L|-|\mp@subsup{L}{o}{\prime})\hat{L}
    L_mag = mag(ball.pos)
    L_hat = ball.pos/L_mag
    F=-k*(L_mag-Lo)*L_hat
\mp@subsup{\vec{p}}{f}{}=\mp@subsup{\vec{p}}{i}{}+\mp@subsup{\vec{F}}{s}{}\Deltat
```

ball. $\mathrm{p}=$ ball. $\mathrm{p}+\mathrm{F}$ deltat

ball.pos = ball.pos +
(ball.p/ball.m)*deltat

Finite changes to infinitesimal changes: derivatives

Case Study in Three Modes of Exploration with Varying Force: Mass on Spring Theory / Analysis

System: Ball

$$
\vec{F}=\left\langle F_{x}, 0,0\right\rangle
$$

Guess from experiment and simulation
$x(t)=X \cos \left(2 \pi \frac{t}{T}\right)+x_{o}$
Shorthand: $\omega \equiv \frac{2 \pi}{T}$
$x(t)=X \cos (\omega t)+x_{o}$

Case Study in Three Modes of Exploration with

Varying Force: Mass on Spring

Theory / Analysis

System: Ball

Guess

$$
x(t)=X \cos (\omega t)+x_{o}
$$

$$
\text { where: } \omega \equiv \frac{2 \pi}{T}
$$

Plug in and see if guessed solution works

$$
\begin{aligned}
\frac{d^{2}}{d t^{2}}\left[X \cos (\omega t)+x_{o}\right] & =-\frac{k}{m} *\left[X \cos (\omega t)+x_{o}-x_{o}\right] \\
X \frac{d^{2}}{d t^{2}}[\cos (\omega t)] & =-\frac{k}{m} *[X \cos (\omega t)] \\
\frac{d}{d t}[-\omega \sin (\omega t)] & =-\frac{k}{m} \cos (\omega t)
\end{aligned}
$$

$$
f \omega^{2} \cos (\omega t)=f \frac{k}{m} \cos (\omega t)
$$

$$
\omega^{2}=\frac{k}{m}
$$

Our guess works if $\omega=\sqrt{\frac{k}{m}}$

Case Study in Three Modes of Exploration with Varying Force: Mass on Spring

Theory / Analysis

System: Ball

Concisely tells us...

$$
x(t)=X \cos (\omega t)+x_{o}
$$

- About the equilibrium
- With a period that...
- Shortens with greater stiffness
- Lengthens with larger masses
$\omega \equiv \frac{2 \pi}{T}=\sqrt{\frac{k}{m}} \Rightarrow T=2 \pi \sqrt{\frac{m}{k}}$
- Doesn't care about amplitude

$$
x(t)=X \cos (\omega t)+x_{o}
$$

where: $\omega \equiv \frac{2 \pi}{T}=\sqrt{\frac{k}{m}}$

Period dependence on: mass

Suppose the period of a
spring-mass oscillator is 1 s .
What will be the period if we double the mass?
a. $\mathrm{T}=0.5 \mathrm{~s}$
b. $T=0.7 \mathrm{~s}$
c. $\quad \mathrm{T}=1.0 \mathrm{~s}$
d. $\mathrm{T}=1.4 \mathrm{~s}$
e. $T=2.0 \mathrm{~s}$

Suppose the period of a spring-mass oscillator is 1 s . What will be the period if we double the spring stiffness? (We could use a stiffer spring, or we could attach the mass to two springs.)
a. $\mathrm{T}=0.5 \mathrm{~s}$
b. $T=0.7 \mathrm{~s}$
c. $\mathrm{T}=1.0 \mathrm{~s}$
d. $T=1.4 \mathrm{~s}$
e. $T=2.0 \mathrm{~s}$

Suppose the period of a spring-mass oscillator is 1 s with an amplitude of 5 cm . What will be the period if we increase the amplitude to 10 cm , so that the total distance traveled in one period is twice as large?

1) $\mathrm{T}=0.5 \mathrm{~s}$
2) $\mathrm{T}=0.7 \mathrm{~s}$
3) $\mathrm{T}=1.0 \mathrm{~s}$
4) $T=1.4 \mathrm{~s}$
5) $\mathrm{T}=2.0 \mathrm{~s}$

Case Study in Three Modes of Exploration with

Varying Force: Mass on Spring

Theory / Analysis

How does gravitational interaction change behavior?

Note: I've defined down as +y direction So Earth's pull has + sign
$\vec{F}_{n e t}=\vec{F}_{s}+\vec{F}_{E}=\left\langle 0, F_{s}+F_{E}, 0\right\rangle$

$$
\begin{gathered}
F_{\text {net. } y}(t)=-k *\left[y(t)-y_{o}\right]+m g \\
F_{\text {net. } y}(t)=-k *\left[y(t)-y_{o}\right]+\frac{k}{k} m g \\
F_{\text {net. } y}(t)=-k *\left[y(t)-y_{o}\right]+k\left[\frac{m g}{k}\right] \\
F_{\text {net. } y}(t)=-k^{*}\left[y(t)-y_{o}-\frac{m g}{k}\right] \\
F_{\text {net. } y}(t)=-k *\left[y(t)-\left\{y_{o}+\frac{m g}{k}\right\}\right] \\
F_{\text {net. } y}(t)=-k *\left[y(t)-y_{o}^{\prime}\right] \\
\text { where } y_{o}^{\prime} \equiv y_{o}+\frac{m g}{k}
\end{gathered}
$$

Varying Force: Mass on Spring

Theory / Analysis

How does gravitational interaction change behavior?

Note: I've defined down as $+y$ direction So Earth's pull has + sign

Solution:

$$
y(t)=Y \cos (\omega t)+y_{o}^{\prime}
$$

$$
\omega \equiv \frac{2 \pi}{T}=\sqrt{\frac{k}{m}} \Rightarrow T=2 \pi \sqrt{\frac{m}{k}}
$$

$\vec{F}_{n e t}=\vec{F}_{s}+\vec{F}_{E}=\left\langle 0, F_{s}+F_{E}, 0\right\rangle$

Period dependence on \mathbf{g} :

Suppose the period of a spring-mass 1) $\mathrm{T}=0.5 \mathrm{~s}$ oscillator is 1 s with an amplitude of 5 cm . What will be the period if we take the oscillator to a massive planet where g = 19.6 N/kg?
2) $T=0.7 \mathrm{~s}$
3) $\mathrm{T}=1.0 \mathrm{~s}$
4) $T=1.4 \mathrm{~s}$
5) $\mathrm{T}=2.0 \mathrm{~s}$

Speed of Sound in a Solid: the logic

$$
\xrightarrow{\substack{d \\
x_{n-1} \\
x_{n} \\
x_{n}}} \begin{aligned}
& d \\
& x_{n+1}
\end{aligned}
$$

$$
\begin{aligned}
& F_{n, n e t}=k_{s}\left(x_{n-1}+x_{n+1}-2 x_{n}\right) \\
& \frac{d p_{n}}{d t}=k_{s}\left(x_{n-1}+x_{n+1}-2 x_{n}\right) \\
& \frac{d\left(m v_{n}\right)}{d t}=k_{s}\left(x_{n-1}+x_{n+1}-2 x_{n}\right) \\
& \frac{d\left(\frac{d x_{n}}{d t}\right)}{d t}=\frac{k_{s}}{m}\left(x_{n-1}+x_{n+1}-2 x_{n}\right)
\end{aligned}
$$

$$
\frac{\mathrm{d}^{2} x_{n}}{\mathrm{~d} t^{2}}=\frac{k_{s}}{m}\left(x_{n-1}+x_{n+1}-2 x_{n}\right)
$$

Speed of Sound in a Solid: the result

$$
v=\sqrt{\frac{k_{s}}{m}} d
$$

Stiffer, for a given atomic displacement, greater force pulling it so greater velocity achieved.

More distance between atoms means further the distortion can propagate just through the light weight spring /bond without encountering the resistance of massive atoms.

More massive, more inertial resistance to applied force, less velocity achieved.

Period dependence on: mass

Suppose the period of a
spring-mass oscillator is 1 s .
What will be the period if we double the mass?
a. $\mathrm{T}=0.5 \mathrm{~s}$
b. $T=0.7 \mathrm{~s}$
c. $\quad \mathrm{T}=1.0 \mathrm{~s}$
d. $\mathrm{T}=1.4 \mathrm{~s}$
e. $T=2.0 \mathrm{~s}$

Suppose the period of a spring-mass oscillator is 1 s . What will be the period if we double the spring stiffness? (We could use a stiffer spring, or we could attach the mass to two springs.)
a. $\mathrm{T}=0.5 \mathrm{~s}$
b. $T=0.7 \mathrm{~s}$
c. $\mathrm{T}=1.0 \mathrm{~s}$
d. $T=1.4 \mathrm{~s}$
e. $T=2.0 \mathrm{~s}$

Suppose the period of a spring-mass oscillator is 1 s with an amplitude of 5 cm . What will be the period if we increase the amplitude to 10 cm , so that the total distance traveled in one period is twice as large?

1) $\mathrm{T}=0.5 \mathrm{~s}$
2) $\mathrm{T}=0.7 \mathrm{~s}$
3) $\mathrm{T}=1.0 \mathrm{~s}$
4) $T=1.4 \mathrm{~s}$
5) $\mathrm{T}=2.0 \mathrm{~s}$

Period dependence on \mathbf{g} :

Suppose the period of a spring-mass 1) $\mathrm{T}=0.5 \mathrm{~s}$ oscillator is 1 s with an amplitude of 5 cm . What will be the period if we take the oscillator to a massive planet where g = 19.6 N/kg?
2) $T=0.7 \mathrm{~s}$
3) $\mathrm{T}=1.0 \mathrm{~s}$
4) $T=1.4 \mathrm{~s}$
5) $\mathrm{T}=2.0 \mathrm{~s}$

Wed.	4.6-.7, .9-.10 Stress, Strain, Young's Modulus, Compression, Sound	RE 4.b
InStove @ noon Science Poster Session: Hedco7pm~9pm		
Lab	L4: Young's Modulus \& Speed of Sound (Read 4.11-.12)	
Fri	$4.11-.12 ; .14-.15$ Sound in Solids, Analytical Solutions Quiz 3	RE 4.c
Mon. $4.8, .13$ Friction and Buoyancy \& Suction	RE 4.d	
Tues.		EP 4, HW4: Ch 4 Pr's
		$46,50,81,88 \& \mathrm{CP}$
Fri.	Exam 1 (Ch 1-4)	

