Mon.	4.15 Atomic nature of matter / springs	RE 4.a
Tues		EP 3, HW3: Ch 3 Pr's 42,
		46, 58, 65, 72 & CP*
		RE 4.b
Wed.	4.67, .910 Stress, Strain, Young's Modulus, Compression, Sound	
	InStove: here noon; Science Poster Session: Hedco7pm~9pm	
Lab	L4: Young's Modulus & Speed of Sound (Read 4.1112)	RE 4.c laptop,
Fri	4.1112; .1415 Sound in Solids, Analytical Solutions Quiz 3	smartphone
Mon.	4.8, .13 Friction and Buoyancy & Suction	RE 4.d
Tues.		EP 4, HW4: Ch 4 Pr's
		46, 50, 81, 88 & CP
•		
Fri.	Exam 1 (Ch 1-4)	

* Uses G = 6.7×10⁻¹¹ N m²/kg²

The Atomic "hypothesis" (p. 139)

- All matter consists of atoms, whose typical radius is about 1×10⁻¹⁰m
- Atoms attract each other when they are close to each other but not too close.
- Atoms repel each other when they get too close to each other.
- Atoms in solids, liquids, and gases keep moving even at very low temperatures.

Seeing atoms

A 180×190 Å² Image of the Pt(001)-hex reconstructed surface taken with a custom Scanning Tunneling Microscope at Aarhus University's Scanning Probe Microscopy lab. The dark spot near the center is a single, missing atom.

Condensed Matter / Surface Science Hex Reconstruction of Pt(001) Surface

- Platinum Crystal
 - Unit Cell
 - Bulk

Condensed Matter / Surface Science Hex Reconstruction of Pt(001) Surface

- Platinum Crystal
 - Unit Cell
 - Bulk
 - Cleaved (001)
 Surface
 - Reconstructed (001) Surface

condensed maker, Surface science

J. IL

F

st

Keconstructed

vec J01

ath.

BIJ

.m

Seeing atoms

A 180×190 Å² Image of the Pt(001)-hex reconstructed surface taken with a custom Scanning Tunneling Microscope at Aarhus University's Scanning Probe Microscopy lab. The dark spot near the center is a single, missing atom.

Pair of atoms rotating

Pair of atoms traveling

Ball-Spring Model

Example: separation of Si atoms

One mole of silicon (6×10^{23} atoms) has a mass of 28 grams. The density of silicon is 2.33 grams/cm³. What is the typical separation of a silicon atoms (i.e., ~ their diameters) assuming their arranged cubically?

Wires as Masses on Parallel and Series Springs

 $\left(\frac{1}{k_1} + \frac{1}{k_2}\right)^{-1} = k_{ser}$

Q4.5.a: Springs in "series" $k_1 k_2$ You hang a 1 kg mass from a spring, which stretches 0.4 m. You link the spring end to end with another identical spring, and hang a 1 kg mass from the linked springs.

How much does this longer spring stretch? a. 0.16 m b. 0.2 m c. 0.4 m d. 0.8 m

Special case: *Identical* **Springs in Series**

k set

Identical Springs 1&2

Q4.5.b: Springs in "series"

- A short spring has a stiffness of 20 N/m. You link 4 of these springs end to end to make a longer spring.
- What is the stiffness of the longer spring?

- a. 0.2 N/m
- b. 5 N/m
- **c.** 20 N/m
- d. 80 N/m

Springs in Parallel

Springs 1 & 2

$$|F_{1}| = k_{1} \Delta s \qquad |F_{2}| = k_{2} \Delta s$$
$$|F| = k_{par} \Delta s$$

$$k_{par}\Delta s = \left|F\right|$$

$$k_{par}\Delta s = k_1\Delta s + k_2\Delta s$$
$$k_{par}\Delta s = (k_1 + k_2)\Delta s$$
$$k_{par} = (k_1 + k_2)$$

Special case: *Identical* Springs in Parallel

$$k_{par} = \left(k_1 + k_1\right)$$

If 3,4,...N_{par} identical springs in parallel:

$$k_{par} = N_{par}k_1$$

The more springs in parallel, the stiffer

Springs 1 & 2 $|F_1| = k_1 \Delta s$ $|F_2| = k_2 \Delta s$ Δs^{-} $|F| = k_{par} \Delta s$

Q4.5.c: Springs in "parallel" You hang a 1 kg mass from a spring, which stretches 0.4 m. You place a second identical spring beside the first, so the 1 kg mass is now supported by two springs. $= (k_1 + k_2)$

Flow much does each spring stretch? a. 0.2 m b. 0.4 m c. 0.5 m d. 0.8 m Q4.5.d: Springs in "parallel"

A short spring has a stiffness of 20 N/m. You use 4 of these springs side by side to support a mass. What is the stiffness of the 4 side-by-side springs, considered as one effective spring? a. 0.2 N/m
b. 5 N/m
c. 20 N/m
d. 80 N/m

Wires as Masses on Identical Parallel and Series Springs

The Micro-Macro Connection: Stiffness for springs in series and in Parallel

$$N_{ser} = \frac{L}{d}$$

Area=N_{par}*d²bond

$$N_{par} = \frac{A}{d^2}$$

$$F = k_{tot} \Delta L$$
$$F = \left(\frac{N_{par}}{N_{ser}} k_1\right) \Delta L = \left(\frac{A}{d \cdot L} k_1\right) \Delta L$$

Q4.6.d: Wires

You hang a 10 kg mass from a copper wire, and the wire stretches by 8 mm. Now you hang the same mass from a second copper wire, whose cross-sectional area is half as large (but whose length is the same).

What happens?

- a) The second wire stretches 4 mm
- b) The second wire stretches 8 mm
- c) The second wire stretches 16 mm

Q4.6.e: Wires

- You hang a 10 kg mass from a copper wire, and the wire stretches by 8 mm. Now you hang the same mass from a second copper wire,
- *which is twice as long*, but has the same diameter.

What happens?
a) The second wire stretches 4 mm
b) The second wire stretches

8 mm

c) The second wire stretches 16 mm

Spring in Series & Parallel Rephrased Stress, Strain, and Young's Modulus

Two wires with equal lengths are made of pure copper. The diameter of wire A is twice the diameter of wire B.

When 6 kg masses are hung on the wires, wire B stretches more than wire A. Y = (F/A)/(DL/L) You make careful measurements and compute Young's modulus for both wires. What do you find?

1) $Y_A > Y_B$ 2) $Y_A = Y_B$ 3) $Y_A < Y_B$ **Example:** You hang a heavy ball with a mass of 14 kg from a silver rod 2.6m long by 1.5 mm by 3.1mm. You measure a stretch of the rod, and find that the rod stretched 0.002898 m. Using these experimental data, what value of Young's modulus do you get?

Mon.	4.15 Atomic nature of matter / springs	RE 4.a
Tues		EP 3, HW3: Ch 3 Pr's 42,
		46, 58, 65, 72 & CP*
		RE 4.b
Wed.	4.67, .910 Stress, Strain, Young's Modulus, Compression, Sound	
	InStove: here noon; Science Poster Session: Hedco7pm~9pm	
Lab	L4: Young's Modulus & Speed of Sound (Read 4.1112)	RE 4.c laptop,
Fri	4.1112; .1415 Sound in Solids, Analytical Solutions Quiz 3	smartphone
Mon.	4.8, .13 Friction and Buoyancy & Suction	RE 4.d
Tues.		EP 4, HW4: Ch 4 Pr's
		46, 50, 81, 88 & CP
•		
Fri.	Exam 1 (Ch 1-4)	

* Uses G = 6.7×10⁻¹¹ N m²/kg²