Mon.	4.1-. Atomic nature of matter / springs	RE 4.a
Tues		$\begin{aligned} & \text { EP 3, HW3: Ch } 3 \text { Pr's 42, } \\ & 46,58,65,72 \& \text { CP*}^{*} \\ & \text { RE 4.b } \end{aligned}$
Wed.	4.6-.7, .9-. 10 Stress, Strain, Young's Modulus, Compression, Sound InStove: here noon; Science Poster Session: Hedco7pm~9pm L4: Young's Modulus \& Speed of Sound (Read 4.11-.12)	RE 4.c laptop,
Fri	4.11-.12; .14-.15 Sound in Solids, Analytical Solutions Quiz 3	smartphone...
Mon.	4.8, .13 Friction and Buoyancy \& Suction	RE 4.d
Tues.		$\begin{aligned} & \text { EP 4, HW4: Ch } 4 \text { Pr's } \\ & 46,50,81,88 ~ \& ~ C P ~ \end{aligned}$
Fri.	Exam 1 (Ch 1-4)	

The Atomic "hypothesis" (p. 139)

- All matter consists of atoms, whose typical radius is about $1 \times 10^{-10} \mathrm{~m}$
- Atoms attract each other when they are close to each other but not too close.
- Atoms repel each other when they get too close to each other.
- Atoms in solids, liquids, and gases keep moving even at very low temperatures.

Seeing atoms

A $180 \times 190 \AA^{2}$ Image of the $\mathrm{Pt}(001)$-hex reconstructed surface taken with a custom Scanning Tunneling Microscope at Aarhus University's Scanning Probe Microscopy lab. The dark spot near the center is a single, missing atom.

Condensed Matter / Surface Science Hex Reconstruction of Pt(001) Surface

Platinum Crystal

- Unit Cell
- Bulk

Condensed Matter / Surface Science Hex Reconstruction of Pt(001) Surface

Platinum Crystal

- Unit Cell
- Bulk
- Cleaved (001) Surface
- Reconstructed (001) Surface

Seeing atoms

A $180 \times 190 \AA^{2}$ Image of the $\mathrm{Pt}(001)$-hex reconstructed surface taken with a custom Scanning Tunneling Microscope at Aarhus University's Scanning Probe Microscopy lab. The dark spot near the center is a single, missing atom.

Pair of atoms rotating

Pair of atoms traveling

Ball-Spring Model

Molecule

Atomic separation

$$
\frac{M_{\text {total }}}{V o l_{\text {total }}}=\text { density }=\frac{m_{\text {atom }}}{V o l_{\text {atom }}}=\frac{m_{\text {atom }}}{d^{3}} \Rightarrow d=\left(\frac{m_{\text {atom }}}{\text { density }}\right)^{1 / 3}
$$

$$
\begin{aligned}
m_{\text {atom }}= & \text { a.m.u.**} m_{\text {nucleon }}=a . m \cdot u \cdot * 1.7 \times 10^{-27} \mathrm{~kg} \\
& m_{\text {atom }}=a . m \cdot u . *\left(\frac{1 \text { kmole }}{6.02 \times 10^{26} \text { atom }}\right)
\end{aligned}
$$

Example: separation of Si atoms

One mole of silicon (6×10^{23} atoms) has a mass of 28 grams. The density of silicon is 2.33 grams $/ \mathrm{cm}^{3}$. What is the typical separation of a silicon atoms (i.e., ~ their diameters) assuming their arranged cubically?

Wires as Masses on Parallel and Series Springs

Spring 1
Spring 2
Springs 1 \& 2

$$
\begin{aligned}
& |F|=k_{\text {ser }} \Delta s \quad|\mathrm{~F}|=\mathrm{k}_{1} \Delta \mathrm{~s}_{1} \\
& |F|=k_{\text {ser }}\left(\Delta s_{1}+\Delta s_{2}\right) \\
& |F|=k_{\text {ser }}\left(\frac{|F|}{k_{1}}+\frac{|F|}{k_{2}}\right) \quad \text { Springs in Series } \\
& \left.1=k_{\text {ser }}\left(\frac{1}{k_{1}}+\frac{1}{k_{2}}\right) \quad\left(\frac{1}{k_{1}}+\frac{1}{k_{2}}\right)^{-1}=k_{\text {ser }} \quad \right\rvert\, \mathrm{s}
\end{aligned}
$$

 You hang a 1 kg mass from a spring, How much does this
which stretches 0.4 m .
You link the spring end to end with another identical spring, and hang a 1 kg mass from the linked springs.
longer spring stretch?
a. 0.16 m
b. 0.2 m
c. 0.4 m
d. 0.8 m

Special case: Identical
Identical Springs 1\&2 Springs in Series

$$
k_{\text {ser }}=\frac{k_{1}}{2}
$$

If $3,4, \ldots, N_{\text {ser }}$ identical springs in series:

$$
k_{s e r}=\frac{k_{1}}{N_{s e r}}
$$

The more springs in
 series, the less stiff

A short spring has a stiffness of $20 \mathrm{~N} / \mathrm{m}$. You link 4 of these springs end to end to make a longer spring.
What is the stiffness of the longer spring?
a. $0.2 \mathrm{~N} / \mathrm{m}$
b. $5 \mathrm{~N} / \mathrm{m}$
c. $20 \mathrm{~N} / \mathrm{m}$
d. $80 \mathrm{~N} / \mathrm{m}$

Springs in Parallel

Springs 1 \& 2

$$
\left|F_{1}\right|=k_{1} \Delta s
$$

$$
k_{p a r} \Delta s=|F|
$$

$\left|F_{2}\right|=k_{2} \Delta s$

$$
\left|\begin{array}{l}
k_{p a r} \Delta s=k_{1} \Delta s+k_{2} \Delta s \\
k_{p a r} \Delta s=\left(k_{1}+k_{2}\right) \Delta s \\
k_{p a r}=\left(k_{1}+k_{2}\right)
\end{array}\right|
$$

$|\mathrm{F}|=\mathrm{k}_{\mathrm{par}} \Delta \mathrm{s}$

Special case: Identical

Springs in Parallel

$k_{\text {par }}=\left(k_{1}+k_{1}\right)$

If $3,4, \ldots \mathrm{~N}_{\text {par }}$ identical springs in parallel:

$$
\left|F_{1}\right|=k_{1} \Delta s
$$

Springs 1 \& 2

The more springs in parallel, the stiffer

$$
|\mathrm{F}|=\mathrm{k}_{\mathrm{par}} \Delta \mathrm{~s}
$$

Q4.5.c: Springs in "parallel"

$$
k_{p a r}=\left(k_{1}+k_{2}\right)
$$

You hang a 1 kg mass from a How much does spring, which stretches 0.4 m . You place a second identical spring beside the first, so the 1 kg mass is now supported by two springs.
each spring

stretch?

a. 0.2 m
b. 0.4 m
c. 0.5 m
d. 0.8 m

Q4.5.d: Springs in "parallel"
A short spring has a stiffness of $20 \mathrm{~N} / \mathrm{m}$. You use a. $0.2 \mathrm{~N} / \mathrm{m}$
4 of these springs side by side to support a mass. b. $5 \mathrm{~N} / \mathrm{m}$
What is the stiffness of the 4 side-by-side springs, considered as one effective spring?
c. $20 \mathrm{~N} / \mathrm{m}$
d. $80 \mathrm{~N} / \mathrm{m}$

Wires as Masses on Identical Parallel and Series Springs

The Micro-Macro Connection:

 Stiffness for springs in series and in ParallelLength $=N_{\text {ser }}{ }^{*} d_{\text {bond }}$
$N_{s e r}=\frac{L}{d}$

Area $=N_{\text {par }}{ }^{*} d^{2}{ }_{\text {bond }}$

$$
N_{p a r}=\frac{A}{d^{2}}
$$

$$
\begin{aligned}
& F=k_{\text {tot }} \Delta L \\
& F=\left(\frac{N_{\text {par }}}{N_{\text {ser }}} k_{1}\right) \Delta L=\left(\frac{A}{d \cdot L} k_{1}\right) \Delta L \quad k_{\text {total }}=\left(\frac{A}{d \cdot L} k_{1}\right)
\end{aligned}
$$

You hang a 10 kg mass from a copper wire, and the wire stretches by 8 mm .
Now you hang the same mass from a second copper wire, whose cross-sectional area is half as large (but whose length is the same).

What happens?
a) The second wire stretches

4 mm
b) The second wire stretches

8 mm
c) The second wire stretches 16 mm

Q4.6.e: Wires
You hang a 10 kg mass from a copper wire, and the wire stretches by 8 mm .
Now you hang the same mass from a second copper wire, which is twice as long, but has the same diameter.

What happens?
a) The second wire stretches 4 mm
b) The second wire stretches 8 mm
c) The second wire stretches 16 mm

Spring in Series \& Parallel Rephrased Stress, Strain, and Young's Modulus

$F=k_{\text {total }} \Delta L$

Microscopic
$F=\left(k_{\text {alomic }}\left(\frac{A}{d L}\right)\right) \Delta L$

Stress $\left(10^{8} \mathrm{~N} / \mathrm{m}^{2}\right)$

Two wires with equal lengths are made of pure copper. The diameter of wire A is twice the diameter of wire B.

When 6 kg masses are hung on the wires, wire B stretches more than wire A.
$\mathrm{Y}=(\mathrm{F} / \mathrm{A}) /(\mathrm{DL} / \mathrm{L})$

You make careful measurements and compute Young's modulus for both wires. What do you find?

1) $Y_{A}>Y_{B}$
2) $Y_{A}=Y_{B}$
3) $Y_{A}<Y_{B}$

Example: You hang a heavy ball with a mass of 14 kg from a silver rod 2.6 m long by 1.5 mm by 3.1 mm . You measure a stretch of the rod, and find that the rod stretched 0.002898 m . Using these experimental data, what value of Young's modulus do you get?

Mon.	4.1-. Atomic nature of matter / springs	RE 4.a
Tues		$\begin{aligned} & \text { EP 3, HW3: Ch } 3 \text { Pr's 42, } \\ & 46,58,65,72 \& \text { CP*}^{*} \\ & \text { RE 4.b } \end{aligned}$
Wed.	4.6-.7, .9-. 10 Stress, Strain, Young's Modulus, Compression, Sound InStove: here noon; Science Poster Session: Hedco7pm~9pm L4: Young's Modulus \& Speed of Sound (Read 4.11-.12)	RE 4.c laptop,
Fri	4.11-.12; .14-.15 Sound in Solids, Analytical Solutions Quiz 3	smartphone...
Mon.	4.8, .13 Friction and Buoyancy \& Suction	RE 4.d
Tues.		$\begin{aligned} & \text { EP 4, HW4: Ch } 4 \text { Pr's } \\ & 46,50,81,88 ~ \& ~ C P ~ \end{aligned}$
Fri.	Exam 1 (Ch 1-4)	

