
Physics 231 – Lab 6 
Energy         

(equipment: Launchers, meter sticks, 2meter sticks, and ruler) 

Objectives 

In this lab, you will do the following: 

 Apply the Energy Principle to an experiment 

 Look at different forms of energy in a simulation of orbital motion 

Background 
According the Energy Principle, the change in energy for a system is Esys Wsurr Q , where Wsurr 

is the work done by the surroundings. The kinetic energy of an object moving much slower than the 

speed of light is K 1

2
mv2

. The gravitational potential energy for a pair of objects is 

U Gm1m2 r , where r is the separation and G 6.7 10 11N m2 / kg2
. The potential energy 

for the Earth and an object near its surface is U mgy , where the y axis must point upward (away 

from the Earth). The Potential energy of a stretched (or compressed) spring is 
2

2
1 skU s . 

In addition to these new ideas / tools, you’re going to draw on the old ones of projectile motion; 

specifically  
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I. Ball shot from a Spring Gun. 
You’ll shoot a metal ball from a spring-loaded gun a few different times.  The first time, you’ll use 

the ball’s motion to determine the spring constant.  With that in hand, you’ll be able to predict where 

the ball will land the next few times.   

 
Determining ks. 
A. Theory 
It’s convenient to break this up into three instants: a) gun is cocked and ready; b)right when the ball is 

leaving the muzzle (and the spring is almost relaxed); c) and when the ball hits the ground. 

 

  

 

 

 

 

 
 Consider the interval from (a) to (b); assuming you can measure the initial and final stretch of 

the spring, si & sf, the ball’s mass, m, and the muzzle speed, vm , use energy considerations to 

develop an expression for the spring stiffness in terms of these. 

 

 

 

 Unfortunately, we don’t have a great way to measure the muzzle speed; however, it’s pretty 

easy to measure how far the ball falls, y, and how far it flies, x, and, of course, g’s well 
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known.  So, use a whiteboard to apply the projectile motion relations to the interval from (b) 

to (c) to write that expression for vm.  

 

WebAssign notes: WebAssign may not handle triple-decker fractions well, so if you 

get your answer in the form 
C
B

A
flip it around to the form 

B

CA
. The ‘radical,’ , 

is produced by typing “sqrt(“,  is produced by typing “Delta”. 

 

 

 Now substitute this second equation into the first so you have an expression for ks in terms of 

all these things that we can measure.  Check that the units are going to work out (if they 

don’t, then you know something needs fixing.)   

WebAssign Note: WebAssign is case-sensitive; sf
2
 is produced by typing “s_f^2”.. 

 

 

 

B. Experiment 
 

In the spirit of ‘it’s all fun and games until someone loses an eye’: 
DON’T LOOK INTO A LOADED GUN! 

 
From considering your theoretical treatment, you probably have a pretty good idea how to proceed.   
 
 
Two measurements you can make right off the bat are the mass of the ball and the height of the 
muzzle off the ground. 
 
 
Now, put the ball in the muzzle, but pause before you push it back with the plastic plunger – this is 
right where the ball will be (and how compressed the spring will be) when the ball launches off the 
spring, point (b).  So let’s measure this length. Just press the plunger gently against the ball and note 
the length of the plunger inserted.  Warning: one end of the plunger is dimpled, to measure the 
depth, press with the other end. 
 
 
It turns out that the compression of the spring is just about that minus 0.23 cm.   
 
Okay, now press the ball back with the plunger until the spring first catches (there are three 
different catches, we’ll start by using just the first.)  Again, measure how deeply the plunger is 
inserted. 
 
Again, subtract 0.23 cm from this to get how compressed the spring is going to be when it starts 
pushing on the ball, point (a). 
 
You’re just about ready to actually shoot the gun.  Since, a priori, you have no idea where the ball 
will land, you’re going to do a trial run first – you should watch carefully to see where the ball hits 
the floor.  Next, you should put a sheet of carbon paper (black side down) just inside a pad of paper 
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and put the pad on the floor where you saw the ball hit.  That way, when you shoot the ball again, 

the ball will leave a mark where it hits (a mark you can use in measuring x.) 
Okay, you’re ready – see the little metal tab with a pin hole on the top of the gun?  That’s the 
trigger, make sure ‘all’s clear’ and you’re ready to note where the ball falls, then fire away. 
 
 

Use the carbon paper to help mark where the ball landed, and then measure x.  Note: the carbon 
paper’s mark may be quite faint, but it should be there.  To be on the safe side, shoot a couple more 
times (every once in a while the gun might undershoot) and then take a good representative value. 
 
You’ve got everything you need.  Calculate the spring stiffness (don’t forget to convert all values to 
base units – kg, m, s.) 
 
 
 

Determining x. 
A. Theory 

Now that you know the spring constant, ks, take the equation you developed on page 2 and 

rearrange it to solve for x.   
 
 
With this, given different initial spring compressions, si, you’ll be able to predict how far the ball will 
fly, and then actually let ‘er rip and see how good your predictions are.  Load and cock the gun, but 
this time push the ball back until it catches a second time, further down the barrel. 
 

A. Experiment 
Again, measure the depth of the plunger into the barrel and subtract 0.23 cm to it to get the initial 
stretch of the spring. 
 
 
 
For this initial stretch, what distance do you predict? 
 
 
Move the pad with the carbon paper to cover this new location on the floor so the ball should land 
on it.  Then fire away.  What distance did you measure? (Again, you may want to shoot a couple of 
times incase one shoot glitches.) 
 
How do your measured and predicted values compare? (% difference; if it’s not less than 10%, go 
back and check your work.) 
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II. Energies for Orbits 
Back in Lab 3, you’d simulated the Earth orbiting the Sun.  Now you’ll track the forms of energy as 

they change throughout the orbit.   

 

A. Planetary Motion 
First, you will look at the energies for system consisting of a star and a planet orbiting around it. It is 

a very good approximation that the star does not move.  

 Find the program from Lab 3 called “EarthSun.py” which predicts the motion of a planet 
around the Sun. Make a copy of that program and name it “PlanetEnergy.py”, add your new 
group members’ names in a comment. 

 Make sure the program is set up to model the elliptical orbit of a planet around a star: 

o Star of mass 2  1030 kg located at < 0, 0, 0> m. 

o Planet of mass 6  1024 kg starting at < 1.5  1011, 0, 0> m with an initial 

velocity of < 0, 3.8  104, 0> m/s. 

o Set the loop up to run until the time is 3  108 s so that there are about two 
complete orbits. 

 Comment out or delete any “print” statements inside the loop to make it run faster. 

 Similarly, you don’t need the force and momentum arrows, so you can (but don’t have to) 
comment out or delete the lines related to those. 

 Test that the program works as you expect.  
 

Now you’re ready to add the code for graphing kinetic and potential energies. 

 To enable the graph-making capabilities, add the following line just after the statement “from 
visual import *”  

from visual.graph import * 

 Add the following lines just before the “while” loop. They define and name the plots that will 
be made as the program runs. 

Kgraph = gcurve(color=color.blue) #create a graph’s curve for kinetic 

Ugraph = gcurve(color=color.green) #create a graph’s curve for potential 

KUgraph = gcurve(color=color.red) #create a graph’s curve for K+U 

The energies depend on the magnitudes of momentum and position vectors, so you’ll add some code 

to calculate those. The function “mag” calculates the magnitude of a vector, so it’ll be handy.  

 Use it to find the magnitude of the planet’s momentum and the separation of the star and 
planet. The following lines should go inside of the loop so that you can plot the various 
energies as functions of the time. (You have to fill in the gray parts.) 

pmag = mag(         ) 

 Use these new variables to calculate the kinetic energy of the planet and the potential energy 
of the system. This should be done right after the previous lines.  Note that 

m
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 Add points to the each of the energy vs. time graphs using the following lines. 

Fill in the blanks in terms of the 

variable names in your program. 
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Kgraph.plot(pos=(t,K))  #add a point to the kinetic energy graph 

Ugraph.plot(pos=(t,U))  #add a point to the potential energy graph 

KUgraph.plot(pos=(t,K+U)) #add a point to the K+U graph 

Note: we could plot the total energy, K+U + rest energy, but since the rest energy doesn’t 
change, we won’t learn much from that (except that the rest energy is way bigger than K+U).  

Pause and consider: What sign should the graph of K+U have?  Qualitatively, what’s the 
significance of its having that sign? How should its magnitude depend on t? Why?  When the 
kinetic energy of the system increases, what should happen to the potential energy of the 
system?  

 Run the program. 

If your graphs of K, U, and K+U aren’t as you’ve reasoned they should be, check your program. 

Too Big Time-steps: In writing computer simulations, there’s a ‘just right’ size for time steps – 
just small enough that the inherent approximations (position and thus force are essentially 
constant while updating momentum and momentum is essentially constant while updating 
position) are valid but not so small that your program takes longer to run than necessary.  In Lab 
3, you checked out how using too large a time step made your planet move unrealistically.  Now 
see what happens to the corresponding energy plots – especially the K+U plot.  Try “deltat = 
1e6” (which is in seconds).  In general, looking for that misbehavior is a good way to check 
whether a time step is the right size.   After you’ve explored this, make deltat smaller again. 

 Okay, change your deltat back to something reasonable. 

 Change the plot commands to make graphs of the energies versus the separation (rmag) 

instead of the time. 

Bound and Free:  Run the simulation a few times with slightly greater initial speed each time – 
you should see the orbits vary from being nearly circular to pronouncedly elliptical, and finally a 
segment of a parabola (when the planet flies away).  Notice what changes and what stays the 
same with the energy graphs. 

 Change the initial speed back to 3.8×104 m/s. 
 
Save and Upload PlanetEnergy.py. 

 
 

5 Bonus Lab Points:  Outside of class, modify your ‘cart on spring’ python program to simulate 

the gun launch.  I’d suggest setting a condition so that when the final stretch length is achieved the 
gravitational force is ‘turned on’ and the spring force is ‘turned off.’  Email it to me when you’ve got 
it. 

 

3D, Just for Fun:  If you happen to have red-green 3D classes, you can see any VPython display in 

3D!  Just add this statement near the beginning of your program: 

scene.stereo = “redcyan”   


