
Physics 231 – Lab 5  
Circular Motion and the Pendulum  

Equipment: 2-meter stick, scale, stopwatch, plane (with batteries), pendulum 

 
Objectives 

This lab will cover applications of the momentum principle to: 

 An object moving in a circle at a constant speed (called uniform circular motion) 

 A pendulum 

I. Circular Motion 
A. Background 

The momentum principle tells us that Fnet dp dt .  So, there are two ways of determining the net 

force applied to an object: directly measuring the forces or deducing them from the resulting change 

in motion (thanks to the momentum principle).  You’ll analyze the circular motion of toy plane from 

both angles – first you’ll determine the net force by strictly considering the individual forces applied 

to the plane, and second you’ll determine the rate of change of momentum by strictly considering the 

observed motion.  Finally, you’ll see how the two compare. 

When an object executes uniform circular motion, only the direction (not the magnitude) of its 

momentum changes.  It’s most convenient then to resolve the momentum principle into components 

parallel to the motion and perpendicular to the motion since 0
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where r is the radius of circle about which the object’s orbiting. 

When an object is uniformly orbiting in a circle, its speed is simply the circumference of that circle 

divided by the period of the orbit. 

 

Note: This experiment is very similar to the circular pendulum discussed in section 5.7 of your text.  

 

B. Experiment 

 Measure the mass of the plane and the length of the string attached to it (note: the mass may 

already be written on the plane’s underbelly.) 

 Hang the plane and get it moving in a steady circular motion. Make the following two 

measurements close together so that the motion does not change in between. 

o Measure the distance h straight down from the ceiling to level at which the plane circles. 

(Be careful not to disturb the plane when you do this.) 

o Measure the time required for the plane to complete one revolution by measuring the time 

it takes to for ten revolutions and then dividing by 10. Be careful not to count “one” until 

the plane has gone around once (it can be tempting to say “one” the moment you start the 

watch.) 

 On a whiteboard, make a diagram showing the string and the plane viewed from the front at one 

instant with the dimensions that you measured labeled so it’s easy to see how L and h are related 

to R (the radius of the plane’s orbit) and to , the angle at which the string hangs relative to the 

vertical.   

 From your measurements of L and h, determine the radius of the orbit, R, and the tangent of the 

angle, tan( we aren’t actually interested in the angle itself, just the tangent.) 
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C. Net Force 
Returning to the white board, make a diagram showing all of the forces on the plane as viewed from 

the front. For consistency sake, 
sF


stands for the string’s force on the plane and EF


 stands for the 

Earth’s force on the plane.  If you can’t think of an object exerting that a particular force, then it 

doesn’t exist or belong on the diagram.  Indicate the angel  on this diagram too.   While there is a 

force due to the propeller out of the page and a drag force into the page, those cancel out so you don’t 

need to include them.  If you’re not quite sure what your picture should look like, there’s a very 

similar one in section 5.7 of your text. 

 Use the diagram, how components of the string’s force are related to its magnitude and angle, 

and Newton’s Second Law in the vertical direction to determine the magnitude of the string 

force, Fs, symbolically in terms of m, g, and .   

 

 Use the diagram to find the net force in the horizontal or radial, a.k.a. centripetal, direction 

symbolically in terms of m, g, and . Show your work. 

 

 Okay, calculate a value for the net radial force. 
 

D. Rate of Change of the Momentum 

 Independently of the calculations in the previous part, determine the magnitude of the rate of 

change of the momentum, dtpd /


 (magnitude and direction, because it is a vector) from the 

plane’s motion, (not the known forces on it) symbolically in terms of m, R, and T.   

 Okay, calculate a numeric value for the rate of change of momentum.   

 

E. The Momentum Principle 

According to the momentum principle, Fnet dp dt . How well do the quantities that you calculated 

in the previous parts agree? (Calculate the percent difference.)  If much greater than 10% difference, 

find and fix your mistake. 
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II. The Pendulum 
The pendulum has not been discussed, but its motion can be modeled using the Momentum Principle.  

A. Computational Model 
There are a number of approaches to predicting the motion of a pendulum. For example, in Problem 

4.P.89 an approximation is made to the equation describing the motion so that it can be solved 

analytically. That gives an approximate expression that is valid for swings with small amplitudes. 

Instead, you will build a computational model of the motion. You already saw, in the most recent 

computational homework problem, that a spring that’s free to move in 3-D swings like a pendulum 

while it bobs.  So, to model a stiff pendulum, we’ll treat it as a bob of mass m hanging from a spring 

with extremely high stiffness, k. 

 

Of course the bob experiences the Earth’s gravitational force down, gmFE


, and the spring’s force 

back along the spring.  As you probably recall, the spring force is  LLLkF os
ˆ)(


; another way 

to put it is )ˆ( LLLkF os


 , where L


gives the position of the hanging mass relative to the other 

end of the spring, and Lo is the spring’s equilibrium length.  

 

When initially creating the bob and spring in your code, it’s going to be handy to phrase the x and y 

components of bob’s initial position in terms of the spring’s length (which we’ll start with being Lo) 

and it’s angle off the vertical, .  The figure below will help you to think how to do that. 

 

In order to model the pendulum, you’ll need to express the forces on the mass in vector notation. 

Suppose one end of a spring is attached to attached at the origin and the mass is at the location 

x,y,0  and the spring makes an angle  with vertical. Also, assume that the length L of the spring is 

larger than its unstretched length L0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Assuming that you’ll start with the spring at its equilibrium length, determine an expression for 

the ball’s initial position in terms of Lo and appropriate trig functions of . 

 

 Draw and label the forces on the bob in the diagram above (assume that the spring / string has 

been stretched.) Make sure that their directions are accurate. 
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Fill in the missing parts of the program. 

 Let the bob have a mass of 0.1 kg.  

 Let the spring have a relaxed length (L0) of 0.5 m and a stiffness of 20 N/m. 

  Set the initial a location of the bob so that the spring is relaxed and it makes an angle of  

with vertical. It is useful to use the functions sin() and cos() in the program so that the angle 

can be changed easily.  

(a) Note that the angles used in those functions must be in radians. The constant pi is 

defined in VPython.  If you want to specify an angle in degrees, you can include the 

conversion factor, 
radians 

180 , within the trig functions. 

 Have the bob start from rest. 

 Make sure that the time interval (dt) is small enough to give accurate results (say, a 

millisecond.) 

 Give it a go and make sure the behavior looks appropriate for a mass swinging from a spring. 

Pause and consider: How does the motion of the pendulum change when you make the spring 

stiffness larger? Is this what you expect?  

 Increase the spring stiffness to 10,000 N/m.  Now, you’ve essentially modeled a mass swinging 

on a string.   

 Determining the Period.  The period of the pendulum is the amount of time that it takes the 

pendulum to repeat its motion (same position and velocity). To determine the period in the 

computational model, you’ll add the following lines of code – they’ll make the program 

determine and print out the period. each time the pendulum swings across the vertical (which it 

does twice a cycle).  From these times, you can determine the period. 

 

Before entering the while loop, add the following 
 

t1 = 0.0 # used in the loop to record when the pendulum crosses 

vertical 

 

Just before your  position-update line, add the following 

 
x = 1*bob.x #used to determine when vertical is crossed 

 

Just after your  position-update line, add the following (make sure to properly indent so it’s 

considered inside the while loop) 

# keep track of each time bob passes vertical from right to left 

if x/bob.x <0 and bob.p.x<0:  

#the difference between current time and last time vertical was 

#crossed form the right is one period 

T = t – t1  

#only ¼ of a period passes before the first time the vertical 

#is crossed, so avoid printing a “T” that time.  

if t1 > 0   

print(“period =”, T,”s.”) 

#updates t1 to keep track of this vertical-crossing time 

t1 = 1*t  
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Run the program with these new lines of code and, from the times printed, determine the period. 

Save your code as pendulum.py and upload it. 

 

 To see how they affect the pendulum’s period, vary some of the parameters in your program 

(the mass, the length, the initial angle, and the gravitational field strength). 

 Pause and consider: for each variation, discuss with your partners why the pendulum’s period 

should depend (or not depend) on the parameters as you observe. 

 

 

B. Experiment 

 Set up a pendulum as shown below using the metal bob. The string going through the ball 

should be adjusted so that it is the same length on each side. 

 

 

  

 L 

 
 Measure the length (L) of the pendulum, which is the shortest distance between the center of the 

ball and the axis around which it swings. This is not the length of the strings. 

 Release the pendulum from an angle of about 10° (exact angle doesn’t matter, as long as it’s 

fairly small.) To get a good measurement of the period, repeat the following 5 times and 

average: Measure the time required for 10 complete swings (back and forth), then divide the 

measured times by 10 to get the period. (warning: it’s tempting to start your count at “one” the 

moment you release the bob – that should be “zero”). 

 

C. Comparison of the Computational Model and the Experiment 
If the simulation accurately models nature, then it should reproduce the experimental results if you set 

it up with the same parameters (mass, length, etc.).  Test that. 

 Change the program so that the values of the mass, length, and initial angle (and g) are the same 

as in the experiment (warning: don’t forget that cos and sin in the program expect angle values 

to be in radians unless you included the conversion factor.)  

 Run the program to determine the period predicted by the computational model. Be sure that the 

spring stiffness is set to a very large value. 

 

 

 

 


